

POLISH ACADEMY OF SCIENCES - MATERIALS SCIENCE COMMITTEE SILESIAN UNIVERSITY OF TECHNOLOGY OF GLIWICE INSTITUTE OF ENGINEERING MATERIALS AND BIOMATERIALS ASSOCIATION OF ALUMNI OF SILESIAN UNIVERSITY OF TECHNOLOGY

Conference Proceedings

ACHIEVEMENTS IN MECHANICAL & MATERIALS ENGINEERING

Struktura i wybrane własności fizyczne nanokrystalicznego stopu Fe_{92,4}Hf_{4,2}B_{3,4}

D. Szewieczek, S. Lesz

Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska ul. Konarskiego 18a, 44-100 Gliwice, Poland

W pracy przedstawiono wyniki badań wpływu obróbki cieplnej na strukturę i własności stopu Fe_{92,4}Hf_{4,2}B_{3,4}. Stwierdzono, że obróbka cieplna wyjściowego stopu prowadzi do zmian struktury oraz własności fizycznych.

1. WSTĘP

Ferromagnetyki nanokrystaliczne stanowią najnowszą generację materiałów magnetycznie miękkich i są obiektem badań prowadzonych w wielu ośrodkach badawczych. Wraz z osiągnięciami w dziedzinie otrzymywania i aplikacji materiałów nanokrystalicznych pojawiają się określone bariery i problemy do rozwiązania. Istotnym problemem w przypadku stopów nanokrystalicznych są wymagania odnośnie technologii ich wytwarzania.

Strukturę nanokrystaliczną można uzyskać przez chłodzenie cieczy metalicznej z szybkością dobraną doświadczalnie dla danego stopu, albo z szybkością chłodzenia cieczy metalicznej zapewniającą utworzenie struktury amorficznej i następnie kontrolowaną krystalizację. Otrzymany w ten sposób materiał w postaci taśmy jest stopem dwufazowym, złożonym z amorficznej osnowy i kryształów o rozmiarach od kilku do kilkudziesięciu nanometrów [1]. Dzięki dwufazowości, nanometrycznej wielkości fazy krystalicznej i niewystępowaniu w niej tekstury, materiał taki wykazuje bardzo dobre własności magnetyczne.

Interesującą grupę wśród ferromagnetyków nanokrystalicznych stanowią stopy typu Fe-M-B, gdzie M=Zr, Hf, Nb [1,2]. Do najmniej zbadanych wśród wymienionej grupy należą stopy z zawartością Hf. W pracy podjęto badania wpływu obróbki cieplnej na strukturę i własności stopu Fe_{92,4}Hf_{4,2}B_{3,4} wytworzonego w postaci taśm w procesie "planar flow casting" z szybkością chłodzenia 30 m/s.

2. PRZEBIEG BADAŃ

Strukturę i własności nanokrystalicznego stopu $Fe_{92,4}Hf_{4,2}B_{3,4}$ wywołane obróbką cieplną obserwowano na taśmach o grubości 0,03 mm i szerokości 8,0 mm. Badania wykonano dla próbek grzanych izotermicznie w czasie 1 h w zakresie temperatur T_a = 398÷1023 K.

Zmiany struktury taśm stopu Fe_{92,4}Hf_{4,2}B_{3,4} w wyniku obróbki cieplnej badano metodą rentgenografii dyfrakcyjnej, stosując filtrowane promieniowanie anody, Co oraz z wykorzystaniem transmisyjnego mikroskopu elektronowego JEM-3010 firmy JEOL.

Pomiary konwencjonalną metodą spektroskopii mössbauerowskiej wykonano przy użyciu spektrometru pracującego w układzie stałego przyspieszenia absorbenta. Źródłem ⁵⁷Co(Rh) mössbauerowskim był o aktywności około 20 mCi. Analiza widm mössbauerowskich umożliwiła określenie średniej wartości pól nadsubtelnych oraz udziału krystalicznej fazy α Fe. Średnia wartość pola nadsubtelnego została określona z rozkładu magnetycznych pól nadsubtelnych P(H) uzyskanych metodą Hesse-Rübartscha [3].

Pomiary przenikalności magnetycznej początkowej $\mu_i(T_a)$ (pomiar w polu 0,5 A/m przy 1000 Hz) oraz natężenie zmian przenikalności magnetycznej po częstotliwości rozmagnesowaniu $\Delta \mu/\mu(t_1)$ ($\Delta \mu = \mu$ ($t_1 = 30$ s)- μ ($t_2 = 1800$ s), gdzie $\mu(t)$ jest przenikalnościa mierzoną w czasie t po rozmagnesowaniu), dla próbek w stanie "as quenched" oraz wygrzewanych przez 1 h w zakresie temperatur 398-1023 K, wykonano na automatycznym urządzeniu do pomiarów przenikalności. Temperaturę Curie wyznaczono korzystając z pomiarów względnej przenikalności magnetycznej in situ w funkcji temperatury wygrzewania stosując grzanie liniowe z prędkością 0,083 K/s. Zmiany pola koercji H_c(T_a) taśm wygrzewanych przez 1 h w podanym wyżej zakresie temperatur badano za pomocą koercjometru z zastosowaniem kompensacji ziemskiego pola magnetycznego. Badano także pierwotne indukcji magnetycznej za pomocą układu wyposażonego krzywe strumieniomierz dla stopu w stanie "as qunched" oraz po obróbce cieplnej optymalizującej rozumianej jako jednogodzinne wygrzewanie w temperaturze, dla której μ w słabych polach magnetycznych osiąga maksimum [4,5,6].

3. WYNIKI BADAŃ I ICH DYSKUSJA

W oparciu o wyniki badań struktury prowadzone metodami rentgenografii dyfrakcyjnej, mikroskopii elektronowej, spektroskopii mössbauerowskiej stwierdzono, że stop $Fe_{92,4}Hf_{4,2}B_{3,4}$ w stanie wyjściowym miał strukturę: amorficzną z udziałem w ilości 4,6 % nanokrystalicznej fazy α Fe o wielkości ziarn od 5 do 10 nm (rys. 1, 2 a, b, tablica 1).

Badany stop charakteryzujący się w stanie wyjściowym jest ferromagnetyczny w temperaturze pokojowej a jego temperatura Curie wynosi 480K (rys. 3).

Własności magnetyczne, to jest μ_i =401 (tablica 1) pozwalają zakwalifikować badany stop w stanie "as quenched" do materiałów o własnościach magnetycznie miękkich. Uzyskane niezbyt duże wartości μ_i prawdopodobnie należy powiązać z nierównomiernościami powierzchni taśm oraz mikropustkami zamrożonymi podczas szybkiego chłodzenia w procesie ich otrzymywania, które są źródłem naprężeń prowadzących do wytworzenia ośrodków hamujących ruch ścianek domenowych podczas procesów magnesowania [7]. Biorąc pod uwagę nieznaczny udział (4,6%) fazy α Fe (rys. 2b) o wielkości ziarn od 5 do 10 nm (rys. 1) w wyjściowej amorficznej strukturze stopu przeprowadzono jego obróbkę cieplną celem zwiększenia udziału fazy α Fe w strukturze oraz poprawienia jego własności magnetycznie miękkich.

Rys. 1. Obraz elektronowy (HRTEM) stopu Fe_{92,4}Hf_{4,2}B_{3,4} w stanie wyjściowym

Tablica 1

Parametry	obróbki	cieplnej	oraz	skład			
fazowy,	przenikal	lność	magnet	tyczna			
początkowa	μ _i ,	pole	koercji	H _c			
i dezakomodacja $\Delta \mu/\mu$ stopu Fe _{92,4} Hf _{4,2} B _{3,4}							

Temperatura	Skład	Własności		
wygrzewania	fazowy	magnetyczne		
T _a ,		μ_i	Δμ⁄μ	H _c ,
K			%	A/m
"as quenched"		401	10	88
398		534	16	88
423		618	21	88
448		659	22	84
473		909	23	60
498		915	8	64
523	A+αFe	957	4	57
548		828	4	68
573		428	5	76
623		124	5	285
673	αFe	183	14	511
723	FeB	290	11	505
773	HfB ₂ ,	97	18	509
823	αFe,	163	20	772
873	FeB,	171	15	1400
923	HfB ₂ ,	284	9	1400
973	Fe ₂ B,	287	6	1360
1023	Fe ₂ Hf	278	5	1364

Rys. 2. Widmo mössbauerowskie otrzymane dla stopu Fe_{92,4}Hf_{4,2}B_{3,4} w stanie wyjściowym "as quenched" (a) oraz wyznaczony z tego widma rozkład magnetycznych pól nadsubtelnych P(H) (b)

Rys. 3. The relative magnetic permeability as a function of annealing temperature for $Fe_{92,4}Hf_{4,2}B_{3,4}$ alloy.

Przeprowadzone badania wpływu temperatury wygrzewania w zakresie od 373÷1023 K w czasie jednej godziny badanego stopu wykazały, że w analizowanym zakresie zachodzą istotne zmiany struktury i własności.

Wygrzewanie stopu do temperatury 623 K nie wywołuje zmian jakościowych w strukturze stopu w stosunku do stanu "as quenched"(tablica 1).

Począwszy od temperatury wygrzewania 673 K zmienia się struktura i własności badanego stopu. W strukturze stopu pojawiają się fazy typu: FeB, HfB₂ (tablica 1). Z kolei w zakresie temperatur 823÷1023 K oprócz wymienionych faz pojawiają się fazy: Fe₂B, Fe₂Hf (tablica 1). Pole koercji badanego stopu w stanie "as quenched" ma wartość H_c=87,5 A/m (tablica 1). Ze wzrostem temperatury obróbki cieplnej wartość H_c maleje osiągając minimum w temperaturze 523 K, co może wskazywać na optymalną zawartość fazy nanokrystalicznej w stopie [8]. Dalsze wygrzewanie stopu prowadzi do silnego wzrostu pola koercji, które następuje w zakresie temperatur wygrzewania od 673 do 1023 K (H_c wynosi od 511,3 do 1400,6 A/m, tablica 1). Utrata miękkości magnetycznej wiąże się z pojawieniem borków (FeB, Fe₂B, HfB₂) w strukturze stopu (tablica 1).

Przenikalność magnetyczna poczatkowa $\mu_i(T_a)$ badanego stopu po obróbce cieplnej zmienia się w kilku etapach (tablica 1). Od stanu "as quenched" do temperatury wygrzewania T_a=473 K następuje wzrost przenikalności magnetycznej początkowej co można tłumaczyć koagulacją mikropustek [9]. Efekt ten powoduje wzrost dezakomodacji przenikalności magnetycznej $\Delta\mu/\mu$ (tablica 1). Drugi etap charakteryzuje się dalszym wzrostem przenikalności magnetycznej początkowej (tablica 1) i spadkiem $\Delta \mu/\mu$ i ma on miejsce w zakresie temperatur wygrzewania taśm stopu od 498÷548 K (tablica 1). Efekt ten wiaże się z wygrzewaniem objętości nadmiarowej wprowadzonej do materiału podczas produkcji oraz tworzeniem się nanokrystalicznej fazy (α Fe) w osnowie amorficznej (tablica 1). W następnym etapie następuje spadek wartości przenikalności magnetycznej początkowej (tablica 1). Zjawisko to odpowiednio w zakresie temperatur wygrzewania od 573 K do 673 K można tłumaczyć wzrostem udziału fazy nanokrystalicznej oraz tworzeniem się borków. Dalej ponownie wzrasta wartość przenikalności magnetycznej początkowej i drugie maksimum występuje w temperaturze 723 K dla badanego stopu (tablica 1). Ostatni etap zmian przenikalności magnetycznej początkowej w zakresie temperatur od 823÷1023 K charakteryzuje się stosunkowo niewielkim wzrostem μ_i , czemu towarzyszy spadek dezakomodacji badanego stopu (tablica 1).

Biorąc pod uwagę maksymalną wartość przenikalności magnetycznej początkowej μ_i =957 oraz minimalną wartość pola koercji H_c=57 A/m (tablica 1) jako optymalną temperaturę obróbki cieplnej badanego stopu przyjęto temperaturę wygrzewania 523 K []. Wygrzewanie w temperaturze optymalnej T_{op} powoduje wzrost udziału objętościowego krystalicznej fazy α Fe do wartości 5,9% (rys. 4b). Średnia wartość pola magnetycznego H stopu Fe_{92,4}Hf_{4,2}B_{3,4} począwszy od stanu wyjściowego "as quenched" do temperatury wygrzewania 523 K oscyluje wokół wartości 23 T, charakterystycznej dla fazy amorficznej (rys. 2b, 4b). Wielkość ziarn fazy α Fe po wygrzewaniu w temperaturze T_{op} mieści się w zakresie od 20÷100 nm (rys. 5). Przebieg zmian przenikalności maksymalnej uzyskanej z krzywych pierwotnych magnesowania dla badanego stopu w stanie wyjściowym oraz po obróbce cieplnej optymalizującej (rys. 6) wskazuje, że wygrzewania w temperaturze T_{op} pozwala na uzyskanie maksymalnej wartości przenikalności magnetycznej μ_{max} =52200. Uzyskane własności magnetyczne (μ_i =957 oraz H_c=56,9 A/m) badanego stopu są związane z udziałem

i wielkością ziarn krystalicznej fazy α Fe w strukturze stopu po wygrzewaniu w temperaturze optymalnej T_{op} (rys. 6).

Rys. 4. Widmo mössbauerowskie otrzymane dla stopu Fe_{92,4}Hf_{4,2}B_{3,4} po obróbce cieplnej w temperaturze 523 K/1 h (a) oraz wyznaczony z tego widma rozkład magnetycznych pól nadsubtelnych P(H) (b)

Udział krystalicznej fazy αFe jest prawdopodobnie niewystarczający, aby mógł zajść efekt uśredniania się anizotropii magnetokrystalicznej. Wynikiem tego jest wysoka wartość pola koercji w badanych stopach. Zbyt mały udział krystalicznej fazy

Rys. 6. Obraz elektronowy (HRTEM) stopu Fe_{92,4}Hf_{4,2}B_{3,4} po wygrzewaniu w temperaturze T_{op} =523 K

Rys. 7. Względna przenikalność magnetyczna stopu $Fe_{92,4}Hf_{4,2}B_{3,4}$ w stanie wyjściowym "as quenched" oraz po obróbce cieplnej optymalizującej w temperaturze T_{op} =523K w funkcji natężenia pola magnetycznego H

αFe warunkuje również stosunkowo dużą magnetostrykcję. Przyczynek do magnetostrykcji pochodzący od fazy krystalicznej może być zbyt mały, aby nastąpiła kompensacja wkładu wnoszonego przez amorficzną osnowę [9]. Celem uzyskania wyższego stopnia

skrystalizowania fazy amorficznej badanych stopów w temperaturach przyjętych za optymalne należałoby wygrzać taśmy w czasie innym aniżeli standardowo stosowany – 1 godziny.

4. PODSUMOWANIE

W wyniku zastosowanej obróbki cieplnej badanego stopu zmieniła się jego struktura i własności magnetyczne w porównaniu do stanu wyjściowego "as quenched". W badanym stopie istnieje możliwość poprawy (optymalizacji) własności magnetycznych przez zastosowanie obróbki cieplnej. Wygrzewanie stopu w temperaturze optymalnej T_{op}=523 K powoduje niewielki wzrost udziału objętościowego fazy α Fe w strukturze stopu tj. z 4,6% do 5,9%, jednak pozwala uzyskać korzystniejsze własności magnetycznie miękkie (μ_i =957, H_c=56,9 A/m, μ_{max} =52200) w porównaniu ze stanem wyjściowym (μ_i =401, H_c=87,5 A/m) badanego stopu.

BIBLIOGRAFIA

- 1. A. Makino, T. Hatanai, A. Inoue, T. Masumoto: Mater. Sci. Eng. A. 226-228 (1997) 594.
- 2. I. Škorvánek, C. G. Kim, K. Kováč, P. Švec, R. Sato-Turtelli: J. of Magn. and Magn. Mater. 215-216 (2000) 440.
- 3. J. Hesse, A. Rübartsch: J. Phys. E 7 (1974) 526.
- 4. Kwapuliński, J. Rasek, Z. Stokłosa, G. Haneczok: 9-th Int. Sci. Conf. AMME 2000, Gliwice-Sopot-Gdańsk (2000) 341.
- 5. P. Kwapuliński, J. Rasek, Z. Stokłosa, G. Haneczok: J. of Magn. & Magn. Mater. 234 (2001) 218.
- 6. D. Szewieczek, S. Lesz: Proc. of the 10th Jubilee Int. Sci. Conf. AMME'2001 (2001) 341.
- 7. J. Rasek: Wybrane zjawiska dyfuzyjne w metalach krystalicznych i amorficznych, WUŚ, Katowice (2000).
- 8. A. Makino, T. Bitoh, J. T. Murakami, T. Hatanai, A. Inoue, T. Masumoto: J. De Physique IV, 8,(1998)103.
- 9. R. Grössinger R. Sato Turtelli: IEEE Trans. On Magn., 30 2 (1994) 455.