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 The paper presents the implementation of a rigid-plastic material model in the 
ABAQUS/Standard finite-element code. The discussion is focused on the theoretical aspects 
related to the derivation of the consistent tangent modulus for a membrane under plane-stress 
conditions. The authors have used this material model for the numerical simulation of sheet-
metal forming processes (hydroforming, punch stretching, deep-drawing, etc.). 

1. INTRODUCTION 

ABAQUS/Standard [1] has been extensively used for the numerical simulation of sheet-
metal forming processes [2, 3, 4]. An attractive feature of ABAQUS is the possibility to 
increase its functionality by means of user subroutines [2]. The authors have used this facility 
(namely, the UMAT subroutine) in order to define a rigid-plastic material model for 
membranes under plane-stress conditions. 
 The finite-element scheme implemented in ABAQUS/Standard is based on a Newton 
linearization of the principle of virtual work [1]. The solution of the equilibrium equations is 
performed in an iterative manner. A very important quantity needed during the iterations is 
the consistent tangent modulus ]C[ . More precisely, ]C[  is a matrix relating small 
perturbations of the co-rotational strains to small perturbations of the corresponding co-
rotational stresses in the current configuration: 

  
(1) 

 
 
For a membrane under plane-stress conditions, }{ σ∆  and }{ ε∆  are defined as follows: 
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( ) }{}{}g){(q}{}{q 000 σ−σ+ε−ε=ε−ε

The components αβσ∆ and )2,1,( =βαε∆ αβ  are expressed in a local co-rotational basis [1, 2]. 
The first and the second unit vectors of this basis are tangent to the mid-surface of the 
membrane. 
 The main task of the researcher interested in implementing a new constitutive model in 
ABAQUS/Standard is to derive the expression of the consistent tangent modulus. 

2. CONSISTENT TANGENT MODULUS FOR A RIGID-PLASTIC MEMBRANE 
UNDER PLANE-STRESS CONDITIONS 

The basic component of a rigid-plastic constitutive model is the yield surface [5]: 
 

(3) 
 

where σ  is the equivalent stress and Y  is a yield parameter. In order to preserve the 
generality of the computations, the yield surface will be kept in the form given by Eqn (3), 
with no reference to any particular expression of the equivalent stress. 

Another element of the constitutive model is the flow rule [5]: 
 

 
(4) 

 
where )2,1,( =βαεαβ�  are the essential components of the plastic strain-rate tensor and ε�  is 

the equivalent plastic strain-rate. The last quantity is defined by the power law [5]: 
 

(5) 
 

Assuming a purely isotropic hardening of the material, only one scalar state parameter is 
needed to describe the evolution of the yield surface. This parameter is the equivalent plastic 
strain computed as a time-integral of the equivalent plastic strain-rate [5]: 

 
(6) 

 
 

The change of the yield surface is included in Eqn (3) by modifying the yield parameter Y  
according to a Swift hardening law [5]: 

 
(7) 

 
where a,K  and n  are material constants. 

The flow rule given by Eqn (4) leads to many numerical difficulties when used in a finite-
element programme. The equilibrium equations suffer from ill-conditioning when the 
equivalent plastic strain-rate is very small [6]. Due to this situation, the authors have decided 
to modify Eqn (4) by adding a penalization term. After integrating over the time increment, 
one obtains an approximation of the flow rule: 
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The notations used in Eqn (8) have the following significance: }{ε  and }{0 ε  are column-
vectors collecting the essential components of the co-rotational strain tensors associated to the 
reference and current configurations, respectively; }{σ  and }{0 σ  are column-vectors 
collecting the non-zero components of the co-rotational stress tensors associated to the current 
and  reference  configurations,  respectively  (their  structure  is  similar  to  that  given  by 
Eqn (2)); }g{  is the gradient column-vector 

 
 

(9) 
 

 
ε0  is the equivalent plastic strain associated to the reference configuration; q  is a large 

positive constant (the numerical tests have shown that 710q ≈  MPa leads to very good 
results). 
 Giving a small perturbation to Eqn (8) and taking into account Eqn (3), one obtains after 
some calculations the desired expression of the consistent tangent modulus: 
 
 

(10) 
 

 
where 
 

 
(11) 

 
is the strain-hardening modulus and 
 

(12) 
 

is a penalty matrix. The notations used in Eqn (12) have the following significance: ]U[ 3  is 
the third-order unit matrix  and 
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is the curvature matrix. 
Eqn (10) should be implemented into the UMAT subroutine in order to describe the 

mechanical behaviour of a rigid-plastic membrane under plane-stress conditions. Any 
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expression of the equivalent stress σ  can be included in Eqn (10). In fact, the expression of 
σ interacts with the consistent tangent modulus by means of matrices }g{  and ]M[ . 

An analysis of the computational procedure described above shows that the constitutive 
equations represent a penalised elastoplastic material ( q  may be treated as an extremely large 
elastic modulus vanishing the reversible component of the strain). 

3. CONCLUSIONS 

The authors have developed a general methodology that may be used in order to obtain the 
consistent tangent modulus of a rigid-plastic membrane. The constitutive model is ready to be 
implemented in the UMAT subroutine of the ABAQUS/Standard finite-element programme. 
The model has been tested by numerical simulation of various sheet-metal forming processes. 
The results of such a simulation will be presented in a separate paper. 
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