
 

11thAMM
E’

2 0
02

 
 
Application of neural networks to forecasting the CCT curves 
for constructional steels* 
 
L.A. Dobrza�ski#, J. Trzaska# 
 
Division of Materials Processing Technology and Computer Techniques in Materials Science  
Institute of Engineering Materials and Biomaterials, Silesian University of Technology 
ul. Konarskiego 18a, 44-100 Gliwice, Poland 
 
 
The original CCT curve evaluation method for the constructional steels, employing the neural 
networks is presented in the paper. The data needed to develop the model were collected 
basing on the CCT curves published in the literature. 

1. INTORODUCTION 

 Neural networks have become, since several years, the tool being used more and more in 
the area of Materials Engineering, which is confirmed by many publications presenting 
research results obtained in many scientific centres in the world. Attempts to develop a model 
making it possible to evaluate the CCT curves basing on the chemical composition and 
austenitizing temperature for some selected steel groups had been made, among others,  
in [3-7]. A single neural network was used in all these cases. Mass fractions of elements and 
austenitizing temperature were used as input data, yielding temperatures of the particular 
transformations at the output, depending on the cooling rate.  The results presented show the 
correct mapping by the network of some trends of transformation temperatures as functions of 
cooling time, however they differ significantly from the experimental results.  

2. MATERIAL AND EXPERIMENTAL METHODOLOGY 

 Literature data were used for developing a method for evaluation of the anisothermic 
transformation curves of the supercooled austenite, including chemical composition, 
autenitizing temperature, and the CCT curves of the constructional steels. The obtained curves 
were analysed, assuming mass fractions of the alloying elements as the criterion. The ranges 
of the assumed mass fractions of elements and austenitizing temperature are included in 
Table 1. Basing on the collected data it was assumed in addition that total of the mass 
fractions of manganese, chromium, nickel, and molybdenum does not exceed 5%.  
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Table 1 
Ranges of mass fractions of elements and austenitizing temperatures for the analysed 
constructional steels  

Mass fractions of elements, % 

R
an

ge
 

C Mn Si Cr Ni Mo V Cu 

Austenitizing 
temperature, 

°C 

Min 0.08 0.13 0.12 0 0 0 0 0 770 
Max 0.77 2.04 1.90 2.08 3.65 1.24 0.36 0.3 1070 

 
 It was found out, basing on analysis of works [3-7], in which neural networks were 
employed for determining the supercooled austenite transformation curves at the continuous 
cooling, that development of a model making it possible to calculate the complete CCT 
diagrams based on a simple mapping: chemical composition and austenitizing temperature � 
CCT diagram, must be subject to a significant forecast error. Calculating curves of the 
beginning and end of the transformations using a single neural network forces using a big 
number of neurons in the output layer, which – at the limited number of the available training 
curves and relatively big changes of the input values’ ranges – does not allow do work out a 
representative training set. A satisfactory increase of the training set size is difficult because 
of the lack of literature data, whereas a significant limiting of the number of neurons in the 
output layer must result in a loss of the important information pertaining the flow of the  
supercooled austenite transformation. In case of a complex task, there is a possibility of  
splitting it into some less complicated ones and using separate networks for solving each of 
these problems. Therefore, while developing the algorithm for evaluating the CCT curves 
using the neural networks, the tasks were isolated, that could be solved with networks having 
less complicated structure, and organisation of the training set makes it possible to increase 
the number of examples with the number of the CCT curves remaining unchanged. Figure 1 
shows the block diagram of the developed method for determining the complete 
transformation curves of the supercooled austenite during its continuous cooling.  
 
 

 
Figure 1. Block diagram of the method for calculation of the CCT curves 
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 The algorithm has been based on four modules. The task of the data entry module is 
receiving information like chemical composition and austenitizing temperature and linking 
them with the cooling rates. The classification module composed of classifiers based on the 
neural networks carries out the task of identification of the structural elements occurring in 
the steel after completing its continuous cooling at a pre-determined rate. The calculation 
module employs neural networks for determining the critical values of the time and 
temperature of transformations, temperatures of beginning and end of transformations, 
hardness, as well as fractions of the structural elements. Some information from the 
classification and calculation modules is processed using rules included in the fourth module, 
safe-guarding from errors that may occur because of splitting the general task. The outputs 
from the particular modules feature the data that unequivocally defines the form of the CCT 
diagram and are the basis for its graphical representation.  
 The data set used to develop the model employing the neural network was split into four 
subsets: training, validating, testing, and verifying one. Allocation of data to the particular 
subsets was done randomly. The optimum type and structure of the neural network, error 
function form, normalisation method for the input data, as well as training method and 
parameters were assumed after analysing their influence on the quality assessment  
coefficients of the developed models. The following quality assessment coefficients were 
assumed for classification problems: coefficient expressing in [%] the number of correct 
classifications and the area under the ROC curve. The ROC curve expresses the network 
sensibility (second class classified correctly) as a function of the incorrectly classified first 
class. In case of random classifications the area under the ROC curve assumes value of 0.5. In 
case of the „ideal” classifier, the area under the ROC curve assumes value of 1. For the 
regression issues the following were analysed: the average network forecast error (Ej), ratio of 
standard deviations of errors and data, which for the ideal forecasts assumes value of 0, as 
well as the Pearson’s correlation coefficient R. 
 Determining the temperatures of the beginning and end of the supercooled austenite 
transformations as a function of chemical composition, austenitising temperature, and cooling 
rate was split into three tasks. The first one yielded the structural constituents of the steel 
cooled at a particular rate from the austenitising temperature, the second one calculated the 
temperatures of the beginning and end of the particular transformations occurring during 
cooling at a particular rate, the third one checked if, between the areas limited by curves of the 
beginning and end of the consecutive transformations, there is an area of austenite stability, or 
else, if the transformations occur immediately one after another.  After the initial evaluation 
of temperatures of the beginning and end of transformations, the final values of these 
temperatures were determined using the conditional and calculation instructions worked out. 
Four models were worked out to solve the first task, making it possible to check if along the 
analysed cooling rate the areas of ferrite, pearlite, and bainite occur, and if the martensitic 
transformation occurs. Having classified the results, the cooling time range was determined – 
characteristic for the particular transformations and also types of the structural constituents  
were determined occurring in the steel after completing the cooling. For all transformations 
the feedforward networks (MLP) were used with one hidden layer and the learning method 
based on the conjugate gradients algorithm. The structures of the particular networks, input 
data, training parameters, and sizes of the particular data sets are given in Table 2. In the 
second task seven models were worked out employing neural networks (MLP) for calculating, 
depending on the cooling rate, of the values of the temperatures of beginning and end of the 
areas of occurring of: ferrite (Fs, Fk), pearlite (Ps, Pk), bainite (Bs, Bk), as well as of the 
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beginning of the martensitic transformation (Ms). Only in case of the Bk temperature, the 
network was used realising the generalised regression (GRNN). The structures of the 
particular networks, method and training parameters, as well as sizes of the particular data 
sets are presented in Table 3.  
 
Table 2 
Specifications of the developed classifiers based on neural networks  

Transformation 
area 

Input 
parameters 

Network 
structure 

Number of training 
epochs 

Number of cases in 
data sets: 

Ferritic 10-7-1 85 Training - 1692 

Pearlitic 10-15-1 456 Validating - 846 

Bainitic 10-20-14-1 506 Testing - 846 

Martensitic 

C, Mn, Si, Cr, 
Ni, Mo, V, Cu, 

vch, Ta 
10-12-1 1008 Verifying - 610 

 
Table 3 
Specifications of the neural networks used for calculating the temperatures of the beginning 
and end of the supercooled austenite transformations  

Number of cases in data sets Tempe-
rature training validating testing verifying 

Input 
parameters 

Network 
structure 

Training 
method 

No of 
epochs 

Fs 10-11-1 quasi-Newton 627 
Fk 

918 459 459 327 
10-7-1 quasi-Newton 1248 

Ps 10-5-1 conjugate 
gradients 258 

Pk 
755 377 377 273 

10-15-1 quasi-Newton 2124 

Ms 854 427 427 319 

C, Mn, 
Si,Cr, 

Ni, Mo, 
V, Cu, 
vch, Ta 

10-11-1 conjugate 
gradients 84 

Bs 830 415 415 284 

C, Mn, Si, 
Cr, Ni, Mo, 
V, Cu, vch, 
Ta, Bsmax 

11-7-1 Lavenberg-
Marquardt 430 

Bk 1250 200 200 284 C, Cr, Ms,  
vch, Bsmax 

5-1250-2-1 k-averages - 

3. CALCULATION RESULTS FOR TRANSFORMATION TEMPERATURES  

 In Table 4 the quality assessment coefficients of the neural networks are presented, used as 
classifiers yielding information on the successive transformations occurring along the 
analysed cooling curves. The error values, ratio of standard deviations, and the Pearson’s 
correlation coefficient R for neural networks are given in Table 5, making it possible to 
determine the temperatures of beginning and end of the particular transformations as 
functions of cooling rate. Examples of the CCT diagrams, worked out basing on the 
calculations carried out, along with the experimental plots, are presented in Figures 3 and 4.  
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Table 4 
Quality assessment coefficients for neural networks, used as classifiers for determining the 
types of occurring transformations  

Testing set Verifying set Transformation 
areas Coefficient of correct 

classifications, % ROC Coefficient of correct 
classifications, % 

Ferritic 90 0.959 91 
Pearlitic 92 0.975 92 
Bainitic 88 0.945 89 
Martensitic 92 0.973 94 

 
Table 5 
Error values and correlation coefficients for the temperatures of beginning and end of 
transformations calculated for data from the testing / verifying data sets  

Tempe
-rature Error Ej, ºC Error Ej, % 

Standard 
deviation of the 

error, ºC 

Ratio of 
standard 

deviations 

Pearson’s 
correlation 

coefficient R 

Fs 18.2 / 21.6 2.6 / 3.0 18.1 / 20.3 0.52 / 0.54 0.87 / 0.85 
Fk 19.4 / 20.5 3.1 / 3.2 19.2 / 17.7 0.49 / 0.50 0.87 / 0.86 
Ps 15.5 / 17.1 2.4 / 2.6 14.5 / 14.8 0.54 / 0.54 0.85 / 0.84 
Pk 22.8 / 21.6 3.8 / 3.6 21.3 / 18.9 0.57 / 0.55 0.80 / 0.85 
Bs 25.8 / 28.4 5.3 / 5.9 27.2 / 28.0 0.58 / 0.62 0.80 / 0.79 
Bk 24.1 / 26.6 7.2 / 8.0 30.9 / 32.3 0.62 / 0.64 0.78 / 0.77 
Ms 21.2 / 22.4 7.1 / 8.0 19.9 / 22.2 0.53 / 0.51 0.83 / 0.86 

 
 

 
Figure 2. CCT diagram for steel with concentrations: 0.22% C, 0.64% Mn, 0.25% Si, 
0.97%Cr, 0.33% Ni, 0.23% Mo, 0.01% V, 0.16% Cu, austenitised at a temperature of 875ºC; 
a) experimental, b) calculated 
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Figure 3. CCT diagram for steel with concentrations: 0.52% C, 0.7% Mn, 0.29% Si, 1.09%Cr, 
1.72% Ni, 0.43% Mo, 0.14% V, austenitised at a temperature of 950ºC; a) experimental,  
b) calculated 

4. SUMMARY 

 The paper presents the methodology of modelling using the neural networks of the 
relationship between the chemical composition and austenitising temperature, and the 
supercooled austenite transformation kinetics during the continuous cooling. The model 
worked out makes it possible to calculate a complete CCT diagram for the steel with a known 
chemical composition and analysis of the influence of particular elements on the characteristic 
points and transformation curves of the supercooled austenite, and also the hardness resulting 
from cooling. It makes also possible forecasting of the structure developed in steel as a result 
of cooling at a particular rate, by the quantitative description of the percentages of ferrite, 
pearlite, bainite, and martensite with the retained austenite [1, 2]. 
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