

POLISH ACADEMY OF SCIENCES - MATERIALS SCIENCE COMMITTEE SILESIAN UNIVERSITY OF TECHNOLOGY OF GLIWICE INSTITUTE OF ENGINEERING MATERIALS AND BIOMATERIALS ASSOCIATION OF ALUMNI OF SILESIAN UNIVERSITY OF TECHNOLOGY

Conference Proceedings

ACHIEVEMENTS IN MECHANICAL & MATERIALS ENGINEERING

Structure of FeAl-Fe_xAl_y composite powders for thermally sprayed coatings

B. Formanek, B. Szczucka-Lasota, A. Letsko

Silesian University of Technology Krasińskiego 8, 40-019 Katowice, Poland

The structure of composite powders with FeAl intermetallic phases after the SHS process is presented. The microstructure and morfology of FeAl-Fe_xAl_y composit powder were determinated. The chemical and phases characteristic of this composit powder were obteined by EDS and X-ray analisys. Results confirm the role of SHS process for the formation of modified iron aluminide powders.

1. INTRODUCTION

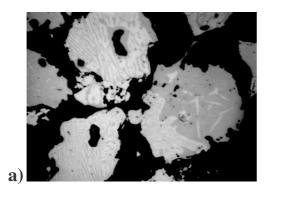
Intermetallic phase powders from Fe-Al, Ni-Al and Ti-Al systems can be produced by alloy spraying methods in a process of mechanical alloying, diffusion saturation or self-propagating high-temperature synthesis []. The choice of the synthesis method determines the structure and properties of powders. It is recommended to obtain composite powders or ones with a complex phase composition in a high-temperature synthesis. The main purpose of the research undertaken was to produce powders from the FeAl system which would have a structure and phase composition enabling their application in selected methods of composites and coatings production.

2. MATERIAL AND TECHNOLOGICAL CONCEPTION

On the basis of an analysis of literature data and own research, a material conception has been assumed which, with its assumptions of the powders' chemical and phase composition, was a new one compared to the existing information about the produced powders containing intermetallic phases from the Fe-Al system. Bearing in mind the hardness and high brittleness of the FeAl phase formed in the range 23.3 - 55 aluminium at.-% in the mixture, it was decided that research should be done on producing a powder which would have high aluminium content together with plastic phases or plastic phases with ones reinforcing the Fe-Al alloy matrix. It has been assumed that two basic types of powders shall be produced: FeAl-Fe_xAl_y – Al₂O₃ and FeAl- Fe_xAl_y. It has also been assumed that the composite powder will contain phases of high dispersion.

After analysing the methods of production of intermetallic phases powders, an activated self-propagating high-temperature synthesis was chosen []. The advantages of this method of obtaining powders with a predetermined phase composition will allow the formation of

powders with a required composition and properties. In the literature, there is no information about the above-mentioned powders produced by means of this method. There is a technological difficulty with the production of powders having a matrix reinforced with aluminium oxide. The main research purpose was to produce the above-described powders.


3. SCOPE OF RESEARCH

The research programme covered:

- development of a material and technological conception of powders production
- development of the technological parameters for the synthesis of the powders
- determination of the structure of powders obtained in laboratory and industrial research
- determination of the areas of the powders future application.

4. RESEARCH RESULTS

The structure and phase composition of powders synthesized in the ASHS process are presented in Figure 1-2. The produced powders are characterized by a morphology typical of those obtained in a high-temperature synthesis (Figure 3). The diffraction pattern in Figure 4 confirms the over-structure of the Fe-Al phase. The FeAl- Fe_xAl_y powders are characterized by a specific structure in which both hard and soft, more plastically phases are present. In case of applying the synthesized powders for thermal spraying of coatings, one should assume that a modification with aluminium oxide will allow increasing the coatings' resistance under conditions of abrasive and erosion wear.

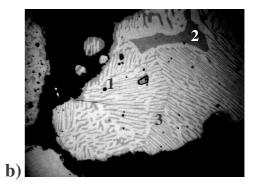


Figure 1. Structure of composite powders with intermetalic Fe-Al dispersive phases

5. CONCLUSION

In the research on obtaining powders which contain intermetallic phases from the Fe-Al system, the earlier developed ASHS method was used. The powder of an intermetallic alloy with a lamellar eutectic structure can be defined by the formula: $FeAl-Fe_xAl_y$. The chosen conditions and technological parameters of obtaining the powder in laboratory or production conditions are proper, which has been confirmed by the X-ray radiography examination.

Obtaining a composite powder with aluminium oxide required a correction of the parameters for production conditions. Powders of a predetermined structure can be used in the processes of thermal spraying of coatings, sintering or formation by means of plastic working methods.

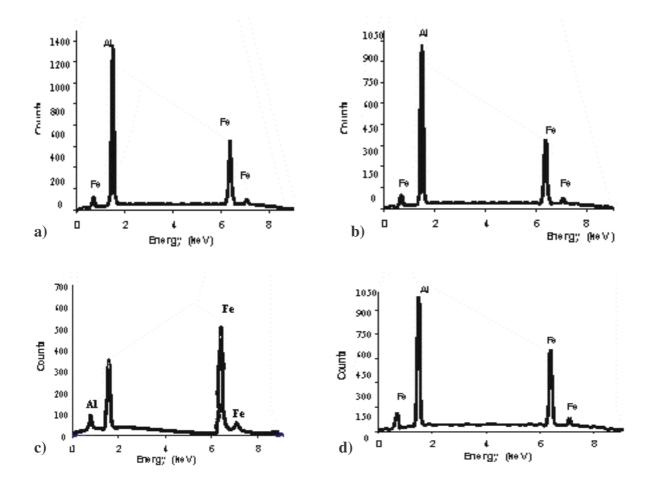


Figure 2. EDX analisys of FeAl-Fe_xAl_y composite powders:
a) - chemical composite from fig. 1a;
b) -d chemical composite of 1-3 points from fig. 1b

Chemical composition of FeAl-FexAly composite powder				
Chemical	Fe		Al	
composition	At %	Wt %	At %	Wt %
counts	43,70	61,63	56,30	38,37
Point 1	43,78	61,71	56,22	38,29
Point 2	70,02	82,86	29,98	17,14
Point 3	33,85	51,43	66,15	48,57

Table 1 Chemical composition of FeAl-FexAlv composite powder

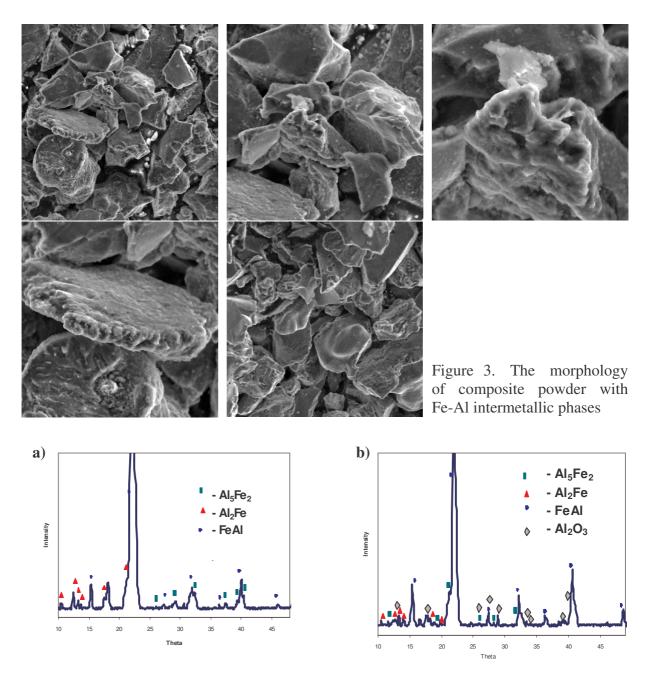


Figure 4. X-ray analisys of composite powders: a) FeAl- Fe_xAl_y; b) FeAl- Fe_xAl_y-Al₂O₃

REFERENCES

- 1. Formanek B.: Aluminocarbothermal synthesis of composite powders with intermetallic phases and dispersion oxides, Attachment of Materials and Mechanical Engineering 2000 ed L. Dobrzański.
- 2. Bożena Szczucka-Lasota , Bolesław Formanek, Andrzej Letsko.: The composite powders with FeAl intermetallics phases for thermally sprayed coatings, XXX SIM, Kraków 2002.
- 3. Formanek B., Szymański K., Szala J., Szczucka-Lasota B.: Structure of composite powders with Fe-Cr and Fe-Al. phases, depressive carbides and aluminium oxide, Kompozyty 1(2001)1.