

POLISH ACADEMY OF SCIENCES - MATERIALS SCIENCE COMMITTEE SILESIAN UNIVERSITY OF TECHNOLOGY OF GLIWICE INSTITUTE OF ENGINEERING MATERIALS AND BIOMATERIALS ASSOCIATION OF ALUMNI OF SILESIAN UNIVERSITY OF TECHNOLOGY

Conference Proceedings

ACHIEVEMENTS IN MECHANICAL & MATERIALS ENGINEERING

Własności magnetyczne i struktura nanokrystalicznych materiałów proszkowych magnetycznie miękkich na osnowie kobaltu*

R. Nowosielski^a, L.A. Dobrzański^{b,#}, J. Konieczny^{a,#}

^aZakład Materiałów Funkcjonalnych, Nanokrystalicznych i Zrównoważonych Technologii Proekologicznych, Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska ul. Konarskiego 18a, 44-100 Gliwice, Poland

^bZakład Technologii Procesów Materiałowych i Technik Komputerowych w Materiałoznawstwie, Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska ul. Konarskiego 18a, 44-100 Gliwice, Poland

W pracy przedstawiono wpływ izotermicznego wygrzewania oraz parametrów wysokoenergetycznego mielenia szkieł metalicznych na osnowie kobaltu na własności magnetyczne oraz strukturę materiału proszkowego. Przeprowadzono proces wysokoenergetycznego mielenia szkła metalicznego Co₆₈Fe₄Mo₁Si₁₃₅B₁₃₅ w różnych czasach dokonano pomiaru własności magnetycznych. W pracy wykazano wpływ i wysokoenergetycznego mielenia na własności magnetyczne proszku i wielkości ziarn proszku.

1. WPROWADZENIE

Od roku 1988, w którym Yoshizawa i in., opublikowali wyniki swoich prac [1] obserwuje się ciągły wzrost zainteresowania materiałami nanokrystalicznymi otrzymanymi na drodze krystalizacji szkieł amorficznych [2].

Z powodu sposobu przygotowania, nanokrystaliczne materiały metalowe są dostępne tylko w postaci bardzo cienkich taśm. Rozszerzenie stosowania tych materiałów w stanie sypkim jest bardzo interesującym zagadnieniem dla technologii [3, 4, 5].

Otrzymywanie proszkowych materiałów nanokrystalicznych bezpośrednio w wyniku mielenia szkieł metalicznych w wysokoenergetycznym młynku umożliwia prowadzenie prac nad otrzymywaniem nanokompozytów ferromagnetycznych, których kształt i wymiary można dowolnie formować [6, 7, 8, 9].

Celem niniejszej pracy jest wytworzenie proszkowego materiału magnetycznie miękkiego ze szkła metalicznego w procesie wysokoenergetycznego mielenia.

2. PRZEBIEG BADAŃ

^{*} Praca finansowana przez KBN grant PBZ/KBN-013/T08/46

[#] Autorzy uczestniczą w realizacji projektu CEEPUS Nr PL-013/02-03 kierowanego przez prof. L.A. Dobrzańskiego.

Badania wykonano na próbkach ze szkła metalicznego Co₆₈Fe₄Mo₁Si_{13,5}B_{13,5} w postaci taśmy o grubości 0,026 mm i szerokości 10,2 mm.

Mielenie taśm w stanie "as quenched" wykonano przy użyciu wysokoenergetycznego młynka 8000 SPEX CertiPrep Mixer/Mill, stosując czas operacji 2, 5, 10, 15, 20, i 25 godzin.

Badania rentgenograficzne przeprowadzono na dyfraktometrze DRON-2 z goniometrem HZG-3 i komputerowym systemem rejestracji promieniowania odbitego, wykorzystując moduł sterujący DRONEK-2 z zastosowaniem lampy o anodzie kobaltowej o napięciu 40 kV i prądzie żarzenia 20 mA. Badania dyfrakcyjne przeprowadzono w zakresie kątów 20 od 40 do 120°, o długości kroku pomiarowego 0,1° a czas zliczeń impulsów wynosił 3 s.

Badania własności magnetycznych przeprowadzono na próbkach toroidalnych na urządzeniu FERROMETR-1 przy następujących parametrach pomiarowych: AC=5 V, f=50 Hz, amplituda 1V. Proszek zasypano luźno do toroidalnego karkasu a następnie nawinięto uzwojenie. Liczba zwojów $n_1=n_2=180$.

3. OMÓWIENIE WYNIKÓW BADAŃ

Badania magnetyczne proszków $Co_{68}Fe_4Mo_1Si_{13,5}B_{13,5}$ wykazały, że proces wysokoenergetycznego mielenia powoduje duży wzrost wartości koercji H_C (rys. 1). Najgorsze własności magnetyczne wykazuje proszek otrzymany po 2 godzinach mielenia amorficznej taśmy (H_C=226 A/m). Jednak w miarę wzrostu czasu mielenia wartość koercji maleje i po 10 godzinach mielenia koercja materiału proszkowego wynosi H_C=14,1 A/m.

 Po dalszym mieleniu koercja
wzrasta nieznacznie i po 25 godzinach mielenia wynosi H_C=19,2 A/m (Tablica 1).

Wraz ze wzrostem czasu mielenia spada wartość koercji (rys. 1.) jednak równocześnie obniża się wartość magnetyzacji nasycenia B_{max} z wartości B_{max} =0,26 T dla proszku uzyskanego po 2 godzinach mielenia aż do B_{max} =0,062 T po 10 godzinach mielenia.

Rysunek 1. Wpływ czasu mielenia na wartość koercji H_c i średnicę ziarn proszku

Tablica 1

Własności magnetyczne materiału proszkowego otrzymanego z taśmy typu AEM zmielonej przez 2, 5, 10 i 25 godzin, pomiary przeprowadzono dla f=50 Hz

Wielkość	Taśma mielona przez:								
	2h	5h	10h	15	20	25h			
H _C [A/m]	226,5	109,8	14,1	15,3	16,5	19,2			
$B_R[T]$	0,031	0,014	≈0	0,003	0,001	≈0			
B _{max} [T]	0,26	0,102	0,062	0,076	0,067	0,066			
H _{max} [A/m]	3205	990	952	872	735	1059			

Obserwacje mikroskopowe przeprowadzone na mikroskopie skaningowym wykazały, że w wyniku wysokoenergetycznego mielenia amorficznej taśmy Co₆₈Fe₄Mo₁Si_{13,5}B_{13,5} po 2

godzinach otrzymano proszek w postaci płatków taśmy ("łusek"). Ze wzrostem czasu mielenia kształt ziaren proszku zmienia się, z płatkowego po 2 godzinach mielenia na sferyczny po 10 godzinach mielenia (rys. 2).

Rysunek 2. Obraz ziarn proszku po a) 2 h, b) 5 h, c) 10 h wysokoenergetycznego mielenia; pow. 100×, mikroskop skaningowy

Z przeprowadzonych obserwacji mikroskopowych wynika, że ze zwiększeniem czasu mielenia maleje wartość średniej średnicy ziarn proszku i odchylenie standardowe. W pierwszej fazie procesu proszek w postaci "płatków" taśmy o średniej wielkości 560,5 μ m (odchylenie standardowe s²=585,3) uzyskany po 2 godzinach mielenia uległ rozdrobnieniu i po 10 godzinach średnia średnica ziarn proszku wynosi tylko 17 μ m (odchylenie standardowe s²=28,9). W drugiej fazie procesu w miarę wzrostu czasu mielenia średnia średnica ziarn proszku nadal maleje jednak nie zachodzi już tak intensywnie (tablica 2).

W wyniku analizy wielkości ziarn proszku stwierdzono, że w miarę wzrostu czasu mielenia maleje wartość odchylenia standardowego średniej średnicy ziarn proszku co świadczy o ujednorodnieniu ich wielkości (rys. 3a, rys. 3b).

Rysunek 3. Histogram wyników pomiaru średnicy ziarn proszku otrzymanego z amorficznej taśmy Co₆₈Fe₄Mo₁Si_{13,5}B_{13,5} poddanej wysokoenergetycznemu mieleniu przez a) 5 godzin, b) 20 godzin

W końcowej fazie eksperymentu po 25 godzinach wysokoenergetycznego mielenia ziarna proszku charakteryzują się równoosiowym kształtem (rys. 4).

Rysunek 4. Obraz ziarn proszku po 25 godzinach wysokoenergetycznego mielenia; a) pow. 500×, b) pow. 2000× mikroskop skaningowy

Tablica 2

Wyniki pomiaru średnicy ziarn proszku uzyskanych w wyniku wysokoenergetycznego mielenia z taśmy Co₆₈Fe₄Mo₁Si_{13.5}B_{13.5} w zależności od czasu mielenia

wielkość	czas mielenia [h]							
wielkose	2	5	10	15	20	25		
średnia [µm]	560,5	306,1	17	3,82	3,06	2,85		
odchyl. standardowe	585,3	158	28,9	2,82	1,74	1,1		
wartość maksymalna [µm]	2230	784,5	207	21,98	12,3	7,26		
wartość minimalna [µm]	43,3	67,1	3,39	1,1	0,92	1,2		

4. PODSUMOWANIE

Badania magnetyczne proszków $Co_{68}Fe_4Mo_1Si_{13,5}B_{13,5}$ otrzymanych w wyniku wysokoenergetycznego mielenia wykazały, że proces ten powoduje znaczne obniżenie własności magnetycznych.

Z przeprowadzonych badań wynika, że w miarę wzrostu czasu mielenia zmienia się kształt ziaren proszku z płatkowego w początkowym etapie procesu na sferyczny oraz zmniejsza się średnia średnica ziarn proszku oraz zmniejsza się wielkość odchylenia standardowego dla mierzonych średnich wartości średnicy ziarna. Świadczy to o tym, że w miarę wzrostu czasu mielenia proszku i rozdrabniania jego ziarn ich wielkości są podobne.

LITERATURA

- 1. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.
- 2. Z. Bałaga, Z. Nitkiewicz, XXIX Szkoła Inż. Mater. Kraków-Wisła 2-5.X.2001.,159-164
- T. Yu. Mochalova, S. D. Kaloshkin, I. A. Tomilin, E. V. Obrucheva, B. V. Jalnin, Mater. Sci. Forum, vol. 225-227 (1996) s. 353
- 4. E. Fechova, J. Kovac, P. Kollar, J. Fuzer, Mater. Sci. Forum, vol. 360-362 (2001) s.577
- 5. H. Chiriac, A.E. Moga, M. Urse, F. Necula, J.M.M.M., 203 (1999) s. 159
- 6. P.G. Bercoff, H.R. Bertorello, J.M.M.M., 187 (1998) s. 169
- 7. B. Daniel, J. Materials Proc. Technology 54 (1995) s. 60
- 8. D. Nuetzel, G. Rieger, J. Wecker, J. Petzold, M. Mueller, J.M.M.M, 196-197 (1999) s. 323
- 9. M. Mueller, A. Novy, M. Brunner, R. Hilzinger, J.M.M.M., 196-197 (1999) s. 357

Autorzy dziękują p. dr inż. M. Adamiakowi za pomocy przy wykonaniu zdjęć na mikroskopie skaningowym