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 In this paper we propose genetic programming to predict surface roughness in end-milling. 
Two independent data sets were obtained on the basis of measurement: training data set and 
testing data set. Spindle speed, feed rate, depth of cut, and vibrations are used as independent 
input variables (parameters), while surface roughness as dependent output variable. On the 
basis of training data set, different models for surface roughness were developed by genetic 
programming. Accuracy of the best model was proved with the testing data. It was established 
that the surface roughness is most influenced by the feed rate, whereas the vibrations increase 
the prediction accuracy. 

1. INTRODUCTION 

 Survey of the hitherto researches about surface roughness reveals that particular efforts 
were devoted to the determination of as much as possible precise model for surface roughness 
prediction. A great part of the researches proposes the multiple regression method to predict 
surface roughness [1-3]. Some researches apply neural network, fuzzy logic, and neural-fuzzy 
approaches for surface roughness prediction [1, 4-6]. In most conventional deterministic 
approaches, such as multiple regression, a model for surface roughness prediction is 
determined in advance. Because of the prespecified size and shape of the model the latter is 
often not capable enough to capture complex relation between influencing parameters. 
 In this work we propose a genetic programming (GP) approach to predict surface 
roughness in end-milling. GP is evolutionary computation method which imitates biological 
evolution of living organisms [7-9]. Two independent data sets were obtained on the basis of 
measurement: training data set and testing data set. Spindle speed, feed rate, depth of cut, and 
vibrations are used as independent input variables, while surface roughness as dependent 
output variable. Different models for surface roughness were developed genetically on the 
basis of training data set. Prediction accuracy of the model was proved on the testing data set. 

2. EXPERIMENTAL SETUP AND RESULTS 

 In this research experimental setup and a part of experimental results are based on the work 
of Lou [1]. In this section only the main points of this research are outlined. 
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The experiment was performed by using CNC vertical machining center. The workpiece 
tested was aluminum cube of size L = 25.4 mm. The end-milling and four-flute high speed 
steel were selected as the machining operation and the cutting tool, respectively. The diameter 
of tool was D = 19.05 mm. Stylus type profilometer was used to obtain roughness average Ra 
as the value to express the surface finish. An accelerometer sensor was used to measure the 
vibrations. In order to get vibration voltage average value per revolution a proximity sensor 
was utilized to count the rotations of the spindle. Spindle speed (x1), feed rate (x2), depth of 
cut (x3), and vibrations (x4) were selected as independent variables.  

Two sets of experimental data were obtained: training data set and testing data set. The 
training data set was obtained on the basis of four levels of spindle speed (750, 1000, 1250, 
and 1500 revolutions per minute), four levels of feed rate (152.4, 304.8, 457.2, and 609.6 
millimeters per minute), and three levels of depth of cut (0.254, 0.762, and 1.27 millimeters). 
For each combination of spindle speed, feed rate, and depth of cut also the corresponding 
vibration data (in �V) were recorded. The corresponding value of the dependent output 
variable, i.e., roughness average Ra (in �m) was collected for each measurement. Table 1 

shows a small part of the training data 
set. In this work training data comprised 
120 measurements selected randomly out 
of 400 measurements originally presented 
in [1].  
 The testing data set was obtained on 
the basis of four levels of spindle speed 
(750, 1000, 1250, and 1500 revolutions 
per minute), three levels of feed rate 
(228.6, 381.0, and 533.4 millimeters per 
minute), and three levels of depth of cut 
(0.254, 0.762, and 1.27 millimeters). 
Also for the testing data set the data on 
vibrations and surface roughness were 
recorded. The testing data set comprised 
36 measurements (Table 2). Note that in 
Table 1 and Table 2 the depth of cut was 
calculated by multiplying the original 
depth of cut by the factor 100, and the 
vibration data were calculated by 
multiplying the original vibration data by 
the factor 10.000. 

 

3. CODING OF ORGANISMS AND FITNESS FUNCTION 

 The organisms that undergo adaptation are in fact mathematical expressions (models) for 
surface roughness prediction consisting of the available function genes (i.e., basic arithmetical 
functions, exponential function, power function, and sine function) and terminal genes (i.e., 
independent input variables, and random floating-point constants). 
An average percentage deviation of all sample data for individual organism � was introduced 
as fitness measure. It is defined as: 

Table 1 
Training data set 
# x1 

[min-1] 
x2 
[mm/min] 

x3 
[mm] 

x4 
[�V] Ra 

[�m] 
1 1500 152.4 127.0 1016.81 1.4224 
2 1500 457.2 25.4 1358.05 3.048 
3 1250 152.4 25.4 901.88 1.27 
4 1000 609.6 25.4 1171.56 4.1402 
5 1500 152.4 127.0 1053.35 1.4224 
6 750 304.8 76.2 1278.61 2.5908 
7 1500 609.6 127.0 1787.36 2.794 
8 1250 609.6 76.2 2196.5 2.7686 
. 
. 
. 

     

120 1000 609.6 127.0 1841.71 3.6068 

 
Table 2 
Testing data set 
# x1 

[min-1] 
x2 
[mm/min] 

x3 
[mm] 

x4 
[�V] 

Ra 
[�m] 

1 1500 228.6 25.4 883.3 1.3462 
2 1500 228.6 76.2 1110.07 1.8796 
3 1250 228.6 25.4 1196.53 2.032 
4 1250 228.6 76.2 1381.42 2.0828 
5 1000 228.6 25.4 911.13 2.3368 
6 1000 228.6 76.2 1225.66 2.4384 
7 750 228.6 25.4 930.96 2.7686 
8 750 228.6 76.2 1254.68 2.5146 
. 
. 
. 

     

36 750 533.4 127.0 1658.57 3.81 
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where n is the size of sample data and �i is a percentage deviation of single sample data. The 
percentage deviation of single sample data, produced by individual organism, is 

%100
||
⋅

−
=∆

i

ii
i E

GE
,                                                                               (2) 

where Ei and Gi are the actual Ra measured by a profilometer and the predicted Ra calculated 
by a model, respectively. It is assumed in this research that the problem is solved successfully 
if the average percentage deviation � of the model is less than 10%. 

4. RESULTS 

 For all GP runs the evolutionary parameters were: population size 1000, maximum number 
of generations 300, probability of reproduction 0.1, and probability of crossover 0.9 

4.1. Selection of genes 
In order to establish which combination of the function and terminal genes best solves the 

set problem the introductory test runs of GP system were executed (for more detail about 
selection of genes see [10]). Analysis of the average percentage deviation of the best models 
showed that the probability of successful solutions is the greatest, if basic arithmetical 
functions (addition, subtraction, multiplication, and division) are used as the function genes. 

The analysis of influence of the individual terminal gene on accuracy of the prediction of 
the surface roughness gave interesting results. In 5% of runs the evolution automatically 
eliminated either the variable depth of cut or vibrations from the developing model. The 
spindle speed and the feed rate variables always remained in the model. This implies that the 
spindle speed and, particularly, the feed rate are the most influencing parameters on which the 
surface roughness depends to the greatest extent. Consequently, the vibrations are not a quite 
independent variable and partly depend on the other three influencing variables. However, it 
was also unambiguously established that the presence of the vibrations as an independent 
variable considerably contributes to accuracy of prediction of surface roughness. 

4.2. The Best Model 
With the above mentioned genes, the simulated evolution in one GP run produced the 

following best model for prediction of surface roughness: 
                 

 
The model was obtained in generation 162 and has the average percentage deviation of the 
training data set �tr = 7.44% and of the testing data set �ts = 7.74%. The analysis of the terms 
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of the model 3 shows that the constant 2.68327, produced spontaneously during the 
evolutionary process, is simply the approximate average value of the measured Ra (actual 
average value of the measured Ra of the training data set is 2.614295). 

5. CONCLUSION 

This paper proposes the genetic programming approach to predict surface roughness based 
on cutting parameters (spindle speed, feed rate, and depth of cut) and on vibrations between 
cutting tool and workpiece. Our conclusions can be summarized as follows: (1) prediction 
accuracy of surface roughness by genetically developed models is very good both for the 
training and testing data set, (2) feed rate has the greatest influence on the surface roughness, 
and (3) GP can automatically find out significance of the influence of the individual 
independent variable on surface roughness. The models that involve all three cutting 
parameters and also vibrations, give the most accurate predictions of surface roughness. 
Further researches based on evolutionary analysis will explore more precisely independent 
variables influence on surface roughness as well as their mutual dependence. In addition, we 
will perform optimisation (e.g., with genetic algorithm) of the models’ floating-point 
constants after the end of the genetic programming run. 
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