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 The idea of information, in the theories of Fisher and Wiener-Shannon [1] [2] , is a 
measure only on probabilistic and repetitiveness events. The idea of information is larger 
than the probability. It is possible the formulation of an Extend Theory of Information for 
probabilistic and non-probabilistic events. In this paper we extend the Wiener–Shannon’s 
axioms  to the non-probabilistic and repetitiveness events. On the basis of so called 
Laplace’s Principle of insufficient reason, the MaxInf principle is defined for to choose 
solutions in absence of knowledge. In this paper, as example of application, the value of 
information, as a measure of equality of data among a set of values, is applied in numeric 
analysis as method for approximation of data. 

1. INTRODUCTION 

 The design of a complex system involves analysis, organisation and calculation of various 
elements under external constraints. The definition of time and space in terms of independent 
variables is:  
  [ ] +⊆∈ RT,t 0 x={{{{ }}}} ⊆⊆⊆⊆∈∈∈∈ Dx,x,x 321 �

3  (1) 

A physical system can be observed in an interval  time [ ] +⊆ RT,0 and in a  volume ⊆⊆⊆⊆D �
3.   

The vector  u of the state of a system is:  
u=(t,x): [[[[ ]]]] �DT, ××××0 �

n                                                                                                                  (2) 

If Ω ⊆⊆⊆⊆ �
2 is the field of application of the system, and ω  a remarked event at time t, then 

the measure of ω  will be always incorrect [7]. The knowledge of  ω  is not given by its 
coordinates in Ω , but it is possible to assert only that ω  is limited in a subset iA  of Ω .  In a 
field of application, one event is  represented by a subset Ω⊆iA  with  

Ω=∪=∩ iiii
AA  and φ  (3) 

If the density of probability function ( )   ωϕ is subjected to the constraints ( ) 0≥ωϕ  then the 
probability is given by 

( ) ( )�=
iAi dAp ϖωϕ         ( ) 1�Ω =ωωϕ d  (4) 

The Shannon's expression Entropy, on the partition   is given by  

ii
A∪=Ω:π     ( ) �

=
−=

n

1i
ii )A(plog)A(pcAS  (5) 
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Entropy is a generic value with very large meaning not connected to probabilities. If we are 
dealing in a space of probability distributions the distance between two probability 
distribution p and q  is given by the distance D(p:q) . If q is a priori distribution we need to 
select the distribution p  closeness to q. For satisfying  the constraints of probability 
distribution we can use the measure of cross-entropy developed by Kullbach and Leibler [6] 

�
=

=
n

i i

i
i q

p
lnpD

1

q):(p  (6) 

D(p:q) is the distance of the a priori  distribution q from the distribution p. In order to 
optimisation a distribution  we can use the  minimum cross entropy principle: From all 
probability  distribution satisfying given constraint we must choose the distribution p that 
minimise the measure D(p:q). This is the well know MinEnt principle.  If the a priori 
distribution is of maximum uncertainty, q =

�����
n

nn 1...,,1  then  
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ln)ln(
1

lnq)(p,  (7) 

where ( ) �
=

−=
n

i
ii ppS

1

lnp  is the Shannon's  entropy. Therefore, when the a priori  

distribution q has the maximum uncertainty, for minimising D(p:q)  we should choose 
values of p  maximising  entropy S(p). This is the Jaynes' maximum principle (MaxEnt) [8].  
Jaynes, the principal proponent of MaxEnt Principle in axiomatic way, suggests that in all 
probability distribution, when we have only the constraint that { }0≥ip  and � =

i ip 1,  we 

should choose that one has maximum entropy. The use of probability distribution with less 
then maximum entropy implies the use of additional information [6]. In order to optimisation 
a distribution can use the  Minimum Cross Entropy Principle: From all probability  
distribution satisfying given constraint we must choose the distribution p that minimise the 
measure D(p:q). This is the well know MinEnt principle.  If the  a priori  distribution is of 
maximum uncertainty then q =

�����
n

nn 1...,,1 . Therefore, when the a priori  distribution q has 

the maximum uncertainty, for minimising D(p:q)  we should choose values of p  maximising  
entropy S(p). This is the Jaynes' maximum principle (MaxEnt).  Jaynes, the principal 
proponent of MaxEnt Principle in axiomatic way, suggests that in all probability 
distribution, when we have only the constraint that { }0≥ip  and � =

i ip 1,  we should 

choose that one has maximum entropy. The use of probability distribution with less then 
maximum entropy implies the use of additional information.  

2. AXIOMS OF NEW THEORY OF INFORMATION (EXTENDED THEORY) 

 The idea of information, in the theories of  Fisher and Wiener-Shannon [1][2], is a measure 
only on probabilistic and repetitiveness events. The idea of information is larger than the 
probability and the axioms of Wiener–Shannon  can be extended to the non-probabilistic and 
repetitiveness events. Let Ω  to be the field of all eventsω , probabilistic or non-probabilistic, 
and ℑ  a class of parts of Ω , ( )Ω℘⊂ℑ arts . With ℑ⊂A  we can assume the next two axioms:  
AXIOM I: The value of information J(A) is always non negative: 
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→ℑ    :   )A(J �
+ (8) 

AXIOM II: The value of information J(A) is monotonous in regard to inclusion: 
 )()(       ,          ,    , AJBJABBA ≥⊂ℑ∈∀  (9) 

Now it is possible the construction of  new algorithms  in terms of information, founded only 
on the first and second axioms[3]. For independent events it is opportune to assume a third 
axiom: 
AXIOM III: If the events ℑ∈BA,  are independent for all the values of information   we have:    

 )()( ) J(       , AJBJABBA +=∩ℑ∈∀  (10) 
The third axiom shows that when we are in presence of independent events  it is possible to 
add up information.  If Ω  is a certain event and φ  the impossible event than, for an universal 
validity of )(AJ  and )(φJ , for all J   and  , ℑΩ  must   be: 

0)( =ΩJ , +∞=)(φJ  (11) 
The expression 0)( =ΩJ  means that Ω  is a certain event without needs of information. The 
expression +∞=)(φJ  means that if φ  is an impossible event with the needs of infinite 
information. In a metric space Ω , if ω  is an event in ( )Ωarts℘⊂ℑ , its measure will be 
always incorrect. The knowledge of ω  is not given by its coordinates in Ω , but it is possible 
only to assert that ω  is limited in a subset ℑ∈iA .   If d( iA ) is the  diameter   of  set  iA ,  
than,  more is  the precision of measures,  less is the  measure  of diameter of event  iA . If we 
assume that   is a set { }y,xP  of ideal data in  a continuous closed bounded subset [ ]D∈Ω , 

given anyε   > 0, there  is a set { }y,xM of  values of measures with sufficiently high precision 

such that 
( ) Ω∈<− y,xMP y,xy,x for    ε   (12) 

 But the probability p of an exact measure  is in inverse proportion to the precision, so the 
ideal measure of point’s coordinates of has null probability to be obtained: it is an impossible 
event. The impossible event φ and the certain event Ω  are always independent from J and A: 
they are universal values. All three axioms have correspondent axioms in Wiener-Shannon 
theory.   

2.1. New Theory of Information in  Metric Space 
 With the axioms I, II, and III it is possible to construct models for information  very 
useful in applications. For every event ℑ∈A  we can have a measure of  information using 
the   mathematical expression : 

)A(d
)A(J

1====  (13) 

 
This definition of information has a natural application in metric space [3]. Let be  ====Ω � 
and �ℑℑℑℑ �, than we have that  better must be the result of a measure than smaller is the 
diameter of iA , and larger  will be J(A). [9]  If we assume that all the measures are made with 
equal care, and for any value of ω  the data have a normal distribution, the probability that 
the error  d( iA ) will fall in a small interval yδ  is given for iω  

( ) ( )[ ] yii  )d(AP δσ
πσ

ω 22 2 exp
2

1 −=  (14) 
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Similar expression can be written for all iω  in Ω . The standard deviationσ  is a measure of 
precision of the measurements and it is a constant for all the data. As the separate 
measurements are independent for all events, the probability for all is the product  

( )∏
=

=
N

k
iPP

0

ω (((( )))) 1

0

2
2

1
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1
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1 ++++
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 )d(Aexp δ
σπσ

 (15) 

Maximum of P is the sign of the goodness of the measures of the diameters of subsets iA .  
This will occur when  

( ) minimum 
0

2 =�
=

N

i
i  )d(A  (16) 

In general, the criterion that the sum of diameters �
=

N

i
i  )d(A

0

 of sets iA be as small as possible 

would have given the better result. We have that the same information can be valued by the 
probability and by the non-probabilistic measures of diameters.  So we can have the measure 
of information from non-probabilistic data. Now, for to ascribe some information to the 
realised event iA , we can assume as measure of information a non-probabilistic function 

[ ]�= Ψ )()( i

def

AdAJ    
)A(d

)A(J
i

i

1∝∝∝∝  (17) 

Any vector (((( ))))nx,,x,xx �21====  representing proportions of some whole is subject to the unit 

sum constraints ���� ====
i

ix 1. One of most usual dissimilarities and distance (((( ))))ji x,xd  to measure  

the difference between two compositions are Minkowski's distances. In general, it is possible 
to have the measures of information for probabilistic and non-probabilistic events using 
empirical or non-empirical functions non-attached to the probability and to the 
repetitiveness.  

2.2. The Extended Principle of Max-Information  (MaxInf) 
 It is possible to define a new principle on basis of the New Theory of  Information. On the 
analogy of MaxEnt principle, the name is Max Information Principle (MaxInf) [6]. In the New 
Theory of Information, instead of probability, it is possible to utilise of a finite number of 
appropriate proportion subject to a set of constraints that add up to one. In observance of the 
Axioms, let nd,...,d,d 21  be n non-negative real numbers, let [6] [7]   

�
=

≠
n

i
id

1

0     
n

i
i ddd

d
+++

=
...21

ρ    1
1

=�
=

n

i
iρ   ( 0≥iρ  i∀ ) (18) 

We can use the measure of information the relation  

J(ρ)= ( )nJ ρρρ ,....,, 21 =  i
1

lnρρ�
=

−
n

i
i                                                                           (19) 

So that:  J(ρ) is maximum when n.... ρρρ ============ 21    

              J(ρ) is minimum when: i∀ only one number is ≠≠≠≠  zero   
In metric space, using  Euclidean's distances  the information  maybe 

( ) ( ) ( ) ( )� �� �
�
�

�
�
�
�

�
−=

ij ij
jiji

ij
jiji xxdxxdxxdxxdJ ,,log,,                    (20) 
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 The value of information J(ρ) is a measure of equality of numbers among themselves. 
Appling the same formalism of MaxEnt Principle it is easy to define the  MaxInf Principle  on 
the basis of  so called Laplace’s Principle of insufficient reason. 
MaxInf Principle: Out of all knowledge, choose the solution closet to the uniform distribution 
of information. 
 In the situations in which we have no reasons for to prefer a solution, it is better choose the 
solution with uniform distribution, or the closet to the uniform distribution of information. 

3. APPLICATION  

 One application of the MaxInf principle is  in problems of approximation as criteria to find 
polynomials for to represent a given set ( ){ },.., ii yxE =  of empirical points. Ideally, this 
process should take in account the reliability of the observations, so the more reliable points 
will have grater weight on approximating function. In absence of knowledge, on basis of 
MaxInf principle, we must use a polynomials, which in representing points, the deviation from 
them choose the solution closet the uniform distribution of information. In metric space, let 
be )x(fy i====  the approximating function from which we obtain, from the points ( )ii yx , , the 
n deviation ( )iii yxfd −= )( . The  estimator vector  is 

( )T
ndddd ,..,, 21=  (21) 

As function for to measure  the information we can use the function  

( )� −
=

i ii yxf
J

)(
1

 (22) 

From MaxInf  we have the max value for J when  
 

nJJJ ============ ...21     ( ) ( ) ( ) i
yxfyxfyxf nn

∀
−

==
−

=
−

      
)(
1

.....
)(
1

)(
1

2211

 (23) 

The max of information is obtained when the approximating function )x(fy i====  has the same 

error from all the n points ( )ii yx , .  

( ) ( ) ( ) hyxfyxfyxf nn =−==−=− )(....)()( 2211  (24) 

The estimator vector has the distributions   
T

n

h,..,h,hd
����
����

����

����

����
����

����

����
==== �����       (25) 

If the approximation function is a polynomial  
.......)( 2 +++++= ndxcxbxaxf   (26) 

The deviations from the points ( ){ },.., ii yx  of the function )x(f i evaluated at certain abscissa 
and the given ordinate corresponding to the same abscissa: 

( )

( ) hydxcxbxayxf

hydxcxbxayxf

n
n

k
nnnnn

k

1.......)(

                                                                            

1.......)(

2

1
11

2
1111

−=−+++++=−

−=−+++++=−
���  (27) 
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From the solution of the linear system bxA ====  with ( )T
nyyyb ,...,, 21=  and (((( ))))Th,...,c,b,ax ====  

we have  the solution of polynomials and the value of h from which can be valuated the  
approximation with the max  information.    
Example- Let us illustrate the method by a very simple numerical problem. Using as 
polynomial the straight line (((( ))))bxay ++++==== , approximate the points, (0,1), (1,4.5) and (2,6.8).  

Solving for ( )Th,b,ax =  would be the task: 

bxA ====  bAx 1−−−−====  
T

.,.,.x 30 92 31====  (28) 

The straight line approximation is  x..y 9231 ++++==== . The value of h, obtained from MaxInf 

principle   is h=0.30. And the estimator  vector is  (((( ))))T,.d 0.3 0.3, 30==== with   spherically 
distributions. 

4. CONCLUSION 

 Considering that the idea of information is larger than the probability, we have  extended 
the axioms of Wiener–Shannon to the non-probabilistic and repetitiveness events. On the 
basis of  so called Laplace’s Principle of insufficient reason, it is defined the  MaxInf Principle 
for to choose solutions  when we are out of all knowledge. The MaxInf principle, applied in 
numeric analysis for approximation of data has shown the possibility of  analysing data on the  
basis of the extended theory of information.  
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