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 In this paper we analyse the applications of MaxInf Principle in a real problem of 
optimisation of a typical industrial manufacturing. After we reminded the theory of 
information we examine an example where is possible to determine a polynomial equation 
that approximates a set of value with a constant deviation that represents the same error for 
every point or the same information.  

1. INTRODUCTION 

 The design of a complex system involves analysis, organisation and calculation of various 
elements under external constraints. The evaluation of criteria adopted may differ in 
importance because for the low level of information the weigh of all parameters is not well 
known. In the correct classification of a plan D, characterised by the set { }iD of criteria, in 
each phase, needs to know and appraise the contribution of new elements introduced in the 
planning. For each new introduced criteria nD it needs to determine the effect, since the 
condition 1−⊃ nn DD is not generally valid. The new effect could be evaluated with the 
calculus of probabilities [1]. In presence of complex problems, it needs to adopt some 
algorithms that allow simplifying and keeping the process under control. If we are dealing in a 
space of probability distributions M represents the distance between two probability 
distributions. If q is a priori distribution and we need to select the distribution p closeness to 
q. for satisfying the constraints of probability distribution we can use the measure of cross-
entropy developed by Kullbach and Leibler �=

i iii qplnpD q):(p . D(p:q) is the distance of 

the a priori distribution q from the distribution p. In order to optimisation a distribution we 
can use the  Minimum Cross Entropy Principle: From all probability  distribution satisfying 
given constraint we must choose the distribution p that minimise the measure D(p:q). This is 
the well know MinEnt principle.  If the a priori distribution is of maximum uncertainty then q 
=

�����
n

nn 1...,,1 . Therefore, when the a priori distribution q has the maximum uncertainty, for 

minimising D(p:q) we should choose values of p maximising entropy S(p). This is the Jaynes' 
maximum principle (MaxEnt). Jaynes, the principal proponent of MaxEnt Principle in 
axiomatic way, suggests that in all probability distribution, when we have only the constraint 
that { }0≥ip  and � =

i ip 1, we should choose that one have maximum entropy. The use of 
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probability distribution with less then maximum entropy implies the use of additional 
information [2].  

2. AXIOMS OF NEW THEORY OF INFORMATION (EXTENDED THEORY) 

 The idea of information, in the theories of Fisher and Wiener-Shannon [3][4], is a measure 
only on probabilistic and repetitiveness events. The idea of information is larger than the 
probability and the axioms of Wiener–Shannon can be extended to the non-probabilistic and 
repetitiveness events. Let Ω  to be the field of all eventsω , probabilistic or non-probabilistic, 
and ℑ  a class of parts of Ω , ( )Ω℘⊂ℑ arts . With ℑ⊂A  we can assume the next two axioms:  
AXIOM I: The value of information J(A) is always non-negative: 

+→ℑ R    :   )(AJ  (1) 

AXIOM II: The value of information J(A) is monotonous in regard to inclusion: 
 )()(       ,          ,    , AJBJABBA ≥⊂ℑ∈∀  (2) 

Now it is possible the construction of new algorithms in terms of information, founded only 
on the first and second axioms [5]. For independent events it is opportune to assume a third 
axiom: 
AXIOM III: If the events ℑ∈BA,  are independent for all the values of information we have:    

 )()( ) J(       , AJBJABBA +=∩ℑ∈∀  (3) 
The third axiom shows that when we are in presence of independent events it is possible to 
add up information.  If Ω  is a certain event and φ  the impossible event than, for an universal 
validity of )(AJ  and )(φJ , for all J   and  , ℑΩ  must be: 

0)( =ΩJ   , +∞=)(φJ  (4) 
The expression 0)( =ΩJ  means that Ω  is a certain event without needs of information. The 
expression +∞=)(φJ  means that if φ  is an impossible event with the needs of infinite 
information. In a metric space Ω , if ω  is an event in ( )Ωarts℘⊂ℑ , its measure will be 
always incorrect. The knowledge of ω  is not given by its coordinates in Ω , but it is possible 
only to assert that ω  is limited in a subset ℑ∈iA . If d( iA ) is the diameter of set iA , than, 
more is the precision of measures, less is the measure of diameter of event iA . If we assume 
that is a set { }y,xP  of ideal data in a continuous closed bounded subset [ ]D∈Ω , given any ε > 

0, there is a set { }y,xM of values of measures with sufficiently high precision such that 

( ) Ω∈<− y,xMP y,xy,x for    ε   (5) 

 But the probability p of an exact measure is in inverse proportion to the precision, so the 
ideal measure of point’s coordinates of has null probability to be obtained: it is an impossible 
event. The impossible event φ and the certain event Ω  are always independent from J and A: 
they are universal values. All three axioms have correspondent axioms in Wiener-Shannon 
theory.   

3. THE EXTENDED PRINCIPLE OF MAX-INFORMATION  (MaxInf) 

 It is possible to define a new principle on basis of the New Theory of Information. On the 
analogy of MaxEnt principle, the name is Max Information Principle (MaxInf) [6]. In the New 
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Theory of Information, instead of probability it is possible the utilisation of a finite number of 
appropriate proportion subject to a set of constraints that add up to one. In observance of the 
Axioms, let nd,...,d,d 21  be n non-negative real numbers, let [7] [8]   

�
=

≠
n

i
id

1

0     
n

i
i ddd
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+++

=
...21

ρ    1
1

=�
=

n

i
iρ   ( 0≥iρ  i∀ )  (6) 

We can use the measure of information the relation  

J(ρ)= ( )nJ ρρρ ,....,, 21 =  i
1

lnρρ�
=

−
n

i
i  (7) 

So that  
J(ρ) is maximum when n.... ρρρ ============ 21  

J(ρ) is minimum when: i∀ only one number is ≠≠≠≠  zero   
In metric space, using Euclidean’s distances the information maybe 

( ) ( ) ( ) ( )� �� �
�
�

�
�
�
�

�
−=

ij ij
jiji

ij
jiji xxdxxdxxdxxdJ ,,log,,  (8) 

 The value of information J(ρ) is a measure of equality of numbers among themselves. 
Applying the same formalism of MaxEnt Principle it is easy to define the MaxInf Principle on 
the basis of so called Laplace’s Principle of insufficient reason. 
MaxInf Principle: Out of all knowledge, choose the solution closet to the uniform distribution 
of information. 
 In the situations in which we have no reasons for to prefer a solution, it is better choose the 
solution with uniform distribution, or the closet to the uniform distribution of information. 

4. APPLICATION IN METRIC SPACE 

 The MaxInf principle can be is useful in problems of approximation as criteria to find 
polynomials for to represent a given set ( ){ },.., ii yxE =  of empirical points [9]. Ideally, this 
process should take in account the reliability of the observations, so the more reliable points 
will have grater weight on approximating function. In absence of knowledge, on basis of 
MaxInf principle, we must use a polynomial, which in representing points, the deviation from 
them choose the solution closet the uniform distribution of information. In metric space, let 
be )( ixfy =  the approximating function from which we obtain, from the points ( )ii yx , , the n 

deviation ( )iii yxfd −= )( . The estimator vector is 

( )T
ndddd ,..,, 21=  (9) 

As function for to measure the information we can use the function  

( )� −
=

i ii yxf
J

)(
1

 (10) 

From MaxInf we have the max value for J when  

nJJJ === ...21     ( ) ( ) ( ) i
yxfyxfyxf nn
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 (11) 

The max of information is obtained when the approximating function )x(fy i====  has the same 

error from all the n points ( )ii yx , .  
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( ) ( ) ( ) hyxfyxfyxf nn =−==−=− )(....)()( 2211  (12) 

The estimator vector has the distributions   
T

n

h,..,h,hd
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==== �����       (13) 

If the approximation function is a polynomial  
.......)( 2 +++++= ndxcxbxaxf  (14) 

The deviations from the points ( ){ },.., ii yx  of the function )x(f i evaluated at certain abscissa 
and the given ordinate corresponding to the same abscissa:     
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From the solution of the linear system bxA =  with ( )T
nyyyb ,...,, 21=  and ( )Thcbax ,...,,,=  

we have the solution of polynomials and the value of h from which can be evaluated the 
approximation with the max information.    

5. APPLICATION 

 Let us illustrate the method with a very simple numerical application, using as polynomial 
equation a parabolic curve ( cbxaxxp ++= 2)( ), that fits the points A, B, C and D. In 
manufacturing industries is important to verify the economic set of production to optimise 
production. It is possible to evaluate a priori the economic set with the usual analysis. For 
mechanical parts, unitary cost function is given by the sum of a cost to equip the apparatus of 
production, a cost to realise a single product and a cost to store the products. 

321 CCCC t ++=  (16) 
Comparing the three values to the number of produced pieces is possible to determine a 
hyperbole, a horizontal straight line and one tilted. 

N
K

C e=1       KC =2       NKC i=3  (17) 

The optimisation (economic set of production) isn't in a very narrow range, and in this range 
it's assimilable to a parable. 
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Figure 1. Diagram: unitary cost–number of elements 
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It's possible, after imposing points given historically or experimentally that are approximately 
in the field of optimisation of the set, to determine the real curve, hypothesising, in according 
to  (12) that the input data are far from it of a minimum constant value 6h. We assume that in 
diagram (Number of elements – Cost) there are 4 known points in the range of optimised 
production, obtained experimentally, and we want to evaluate the value 6h of the 
approximation with the MaxInf principle.  
Input data are:  

))   D()   C()  BA( 132360013027001332100(1381800 −−−−  (18) 
with x = number of mechanical elements and y = unitary cost. 
Imposing that  

hyxp ±=−)(  (19) 
curve of constant error, or 

yhcbxax =±++2   (20)  
we have, alternatively 
 

132360012960000
13027007290000
13321004410000
13818003240000

=−++
=+++
=−++
=+++

hcba

hcba

hcba

hcba

 (21) 

 
and in matricial term 
 

132
130
133
138

11360012960000
1127007290000
1121004410000

1118003240000

=

−

−

h

c

b

a

 (22) 

 
we have as solution the parabolic curve 

75.1860397.010851.6)( 26 ++∗= − xxxp  (23) 
where it’s easy to verify that the value obtained with MaxInf principle is h=60.55 
So it’s possible to calculate the curve of optimisation, that approximates with the max 
information. 

6. CONCLUSION 

 The result obtained isn’t absolute. It is possible to recalculate the curve with a new value in 
input that modifies the value of h. The MaxInf Principle for non probabilistic events can be 
utilised when we need to evaluate an approximate function by a cloud of points, preserving a 
constant value of information h. The applied method has the same numerical result of the 
theory of the approximation of Cebysev.   
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