

POLISH ACADEMY OF SCIENCES - COMMITTEE OF MATERIALS SCIENCE SILESIAN UNIVERSITY OF TECHNOLOGY OF GLIWICE INSTITUTE OF ENGINEERING MATERIALS AND BIOMATERIALS ASSOCIATION OF ALUMNI OF SILESIAN UNIVERSITY OF TECHNOLOGY

Conference Proceedings

ACHIEVEMENTS IN MECHANICAL & MATERIALS ENGINEERING

Zachowanie elektrochemiczne stopu $Fe_{78}Si_{13}B_9$ w roztworach siarczanów i chlorków o różnych temperaturach

D. Szewieczek^a, A. Baron^a, G. Nawrat^b

^aInstytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska Konarskiego 18a, 44-100 Gliwice, Polska

^bKatedra Chemii i Technologii Nieorganicznej, Politechnika Śląska Krzywoustego 6, 44-100 Gliwice, Polska

W pracy przedstawiono wyniki badań odporności na korozyję stopu $Fe_{78}Si_{13}B_9$ w stanie wyjściowym "as quenched" oraz po obróbce cieplnej w zakresie temperatur od 350°C do 550°C. Badania prowadzono metodą polaryzacji anodowej próbek w rozworach siarczanów i chlorków, w temperaturach 25 °C, 35 °C i 70 °C

1. WPROWADZENIE

Ferromagnetyki miękkie nowej generacji na osnowie żelaza obejmują dwie grupy materiałów – jednofazowe o strukturze amorficznej (np. typu Metglas) oraz dwufazowe o strukturze nanokrystalicznej (np. typu Finemt, Nanoperm). Obecnie brakuje norm klasyfikujących te tworzywa. Funkcjonują zatem nazwy nadawane im przez producentów, przy czym można opisać te stopy ogólnym wzorem [1]:

 $TL_{1-x}(TE, M, NM)_x$

(1)

gdzie

TL - ferromagnetyczny pierwiastek przejściowy, podstawowy składnik stopu: Fe, Co, Ni,

TE – pierwiastek przejściowy np. Zr, Nb, Hf, Ta,

M – metaloid np. B, C, P, Si,

NM – metal szlachetny Cu, Ag, Au,

Własności magnetycznie miękkie stopów o strukturze amorficznej i nanokrystalicznej na osnowie żelaza predestynują je do zastosowań w budowie urządzeń i elementów energoelektrycznych, elektrotechnicznych lub elektronicznych. Materiały te charakteryzują się między innymi dużą przenikalnością magnetyczną i małą koercją [1 - 4,7].

Materiały, z których wykonuje się podzespoły magnetyczne narażone są na działanie różnorodnych środowisk zakłócających stabilność ich pracy. Środowiska te to między innymi atmosfera przemysłowa i nadmorska, różne typy klimatu od suchego arktycznego do

wilgotnego i gorącego klimatu zwrotnikowego, oprócz tego materiały magnetyczne pracują w obecności olejów mineralnych lub sześciofluorku siarki.

Podczas eksploatacji materiały magnetyczne nagrzewają się a temperatura jest kolejnym czynnikiem wpływającym na zmiany własności materiału. Wszystkie te czynniki sprzyjają korozji elektrochemicznej. O wielkości problemów związanych z korozją elektrochemiczną świadczą oszacowane kwoty przeznaczone na działania antykorozyjne. W przypadku przemysłu energetycznego koszty te wynoszą prawie 10 % całości kosztów związanych z eksploatacją urządzeń energetycznych [8, 9,10].

Czynnikami naturalnymi mogącymi powodować korozją elektrochemiczną tworzyw metalicznych na osnowie żelaza to tlen, woda, dwutlenek węgla, w warunkach przemysłowych są to również dwutlenek siarki i siarkowodór lub tlenki azotu, a w warunkach nadmorskich jony chloru. Kolejnym parametrem jest temperatura atmosfery korozyjnej. Zgodnie z regułą van't Hoffa podwyższenie temperatury układu tworzywo metaliczne – elektrolit o 10°C powoduje podwojenie szybkości korozji [11].

Tworzywa amorficzne są materiałami jednofazowymi a ich jednorodność strukturalna można uważać za gwarancję dobrej odporności korozyjnej [5]. Natomiast wytworzenie w tych materiałach w wyniku obróbki cieplnej struktury nanokrystalicznej złożonej z amorficznej osnowy i fazy α Fe(Si) różniących się potencjałem elektrochemicznym, powodować będą powstawanie ogniw galwanicznych i sprzyjać pogorszeniu odporności korozyjnej stopu Fe₇₈Si₁₃B₉.

Projektując amorficzne i nanokrystaliczne materiały magnetycznie miękkie na osnowie żelaza należy uwzględnić szereg czynników, od których zależeć będzie ich trwałość, a co jest z tym związane – trwałość urządzenia w skład którego wchodzą. Niezmienność własności magnetycznych tworzyw ma kluczowe znaczenie podczas eksploatacji podzespołów magnetycznych. Awarie tych elementów powodują nie tylko starty materialne, ale również są zagrożeniem dla środowiska, zdrowia a nawet życia ludzkiego [12 – 18].

W artykule przedstawiono badania elektrochemiczne stopu typu Metglas $Fe_{78}Si_{13}B_9$ przeprowadzone w roztworach zawierających jony siarczanowe lub chlorkowe w różnych temperaturach

2. OPIS EKSPERYMENTU

Badaniom poddano stop amorficzny $Fe_{78}Si_{13}B_9$ otrzymany metodą melt – spinning. Strukturę stopu przed i po obróbce cieplnej w zakresie temperatur od 350°C do550°C w czasie jednej godziny analizowano metodą dyfrakcji promieni rentgenowskich. Wielkość ziarna krystalitów roztworu stałego $\alpha Fe(Si)$ obliczono na podstawie pomiaru szerokości linii dyfrakcyjnej stosując zależność Scherrera [19].

Wymiary próbek stopu, które poddano badaniom korozyjnym wynosiły 30,0×7,0×0,028 mm. Badania korozyjne polegające na rejestracji krzywych polaryzacji anodowej przeprowadzono za pomocą systemu pomiarowego składającego się z potencjostatu PGP-21 współpracującego z oprogramowaniem VoltaMaster 1 firmy Radiometer Copenhagen oraz termostatu, który umożliwiał utrzymywanie odpowiedniej temperatury. Roztwory, w których badano próbki stopu stanowiły: 0,5 M roztwór wodny Na2SO₄ przygotowane z odczynników o czystości cz.d.a. produkcji POCh Gliwice oraz podwójnie destylowanej wody. Temperatura roztworów wynosiła 25 °C, 35 °C i 70 °C.

Pomiary elektrochemiczne prowadzono w trójelektrodowym elektrolizerze szklanym. Elektrodą pomocniczą była elektroda platynowa, a elektrodą porównawczą była nasycona elektroda kalomelowa dla roztworu NaCl, natomiast dla roztworu Na₂SO₄ zastosowano elektrodę siarczanowo – rtęciową. Szybkość zmiany potencjału wynosiła 4 mV/s. Eektrodą badaną stanowiły próbki stopu, których przygotowanie polegało na przemyciu acetonem i pokryciu lakierem nieprzewodzącym w taki sposób, aby powierzchnia badana próbki wynosiła około 1 cm². Do badań potencjodynamicznych przyjęto błyszcząca stronę taśmy, która podczas wytwarzania nie ma kontaktu z powierzchnią walca chłodzącego.

Na podstawie krzywych potencjodynamicznych wyznaczono prąd korozyjny i_{kor}. Do jego określenia wykorzystano obszary zbliżone do potencjału równowagowego E_{kor} i skorzystano z zależności Tafela. Na podstawie wyznaczonych wartości prądu korozyjnego obliczono szybkość korozji v_{kor} badanego materiału w środowisku siarczanów i chlorków korzystając z wbudowanej funkcji programu "1st Stern Method – Tafel extrapolation".

3. WYNIKI I ICH OMÓWIENIE

Dane dotyczące temperatury i czasu obróbki cieplnej stopu $Fe_{78}Si_{13}B_9$ oraz jego struktury zestawiono w tablicy 1.

Tablica 1

Parametry obróbki cieplnej stopu Fe78Si13B9 oraz jego struktura

Temperatura obróbki cieplnej, °C	Czas obróbki cieplnej, h	Rodzaj struktury	Rozmiar krystalitów fazy αFe(Si) d, nm
As quenched		amorficzna	
350		amorficzna	
375		amorficzna	
400		amorficzna	
425	1	amorficzna	
450		amorficzna + α Fe(Si)	24
475		amorficzna + α Fe(Si)	26
500		amorficzna + α Fe(Si)	30
525		$\alpha Fe(Si) + Fe_3B$	38
550		α Fe(Si) + Fe ₃ B	40

Obróbka cieplna wywołała zmiany struktury pierwotnie amorficznego stopu $Fe_{78}Si_{13}B_9$ oraz zmiany w ich zachowaniu elektrochemicznym. Stop poddany obróbce cieplnej w temperaturach od 350 °C do 425 °C pozostawał nadal amorficzny. W temperaturze 450 °C w amorficznej osnowie pojawiła się faza $\alpha Fe(Si)$ o rozmiarach krystalitów około 24 nm. Stop po obróbce cieplnej w temperaturach 525 °C i 550 °C całkowicie skrystalizował, obok fazy $\alpha Fe(Si)$ pojawiła się faza Fe_3B .

Wykresy zależności gęstości prądu od zmieniającego się potencjału w roztworach siarczanów i chlorków w temperaturach 25 °C, 35 °C i 70 °C przedstawiają rysunki od 1 do 6. Kształt krzywych polaryzacyjnych amorficznego i obrobionego cieplnie stopu Fe₇₈Si₁₃B₉ były zbliżone. Gdy potencjał zadawany wzrastał powyżej potencjału korozyjnego, gęstość prądu wzrastała monotonicznie wraz z potencjałem elektrody. Jedynie dla próbek wygrzewanych w temperaturze 475 °C i 525 °C badanych w 0,5 M roztworze Na₂SO₄ o temperaturze 25 °C zaobserwowano obszar aktywno – pasywny.

Rysunek 1 Krzywe polaryzacji anodowej stopu $Fe_{78}Si_{13}B_9$ badanego w 0,5 M roztworze Na_2SO_4 o temperaturze 25°C

Rysunek 3 Krzywe polaryzacji anodowej stopu Fe $_{78}$ Si $_{13}$ B $_9$ badanego w 0,5 M roztworze Na $_2$ SO $_4$ o temperaturze 35°C

Rysunek 5 Krzywe polaryzacji anodowej stopu $Fe_{78}Si_{13}B_9$ badanego w 0,5 M roztworze Na_2SO_4 o temperaturze 70°C

Rysunek 2 Krzywe polaryzacji anodowej stopu Fe₇₈Si₁₃B₉ badanego w 0,5 M roztworze NaCl o temperaturze 25°C

Rysunek 4 Krzywe polaryzacji anodowej stopu Fe₇₈Si₁₃B₉ badanego w 0,5 M roztworze NaCl o temperaturze 35°C

Rysunek 6 Krzywe polaryzacji anodowej stopu Fe₇₈Si₁₃B₉ badanego w 0,5 M roztworze NaCl o temperaturze 70°C

Kształty krzywych potencjodynamicznych wskazują, że stop zarówno w stanie amorficznym jak i po obróbce cieplnej nie wykazywał skłonności do pasywacji w żadnym z dwóch roztworów. Wartości parametrów E_{kor} , i_{kor} oraz v_{kor} otrzymane za pomocą programu na podstawie wyznaczonych krzywych potencjodynamicznych w roztworach siarczanów i chlorków w temperaturach 25 °C, 35 °C i 70 °C zestawiono w tablicy 2 oraz tablicy 3.

Tablica 2

Wartości parametrów korozyjnych stopu Fe78Si13B9 badanego w 0,5 M roztworze Na2SO4, otrzymane w oparciu o "Ist Stern method – Tafel extrapolation"

Tammanatum	Temperatura roztworu, °C								
obróbki <u></u> cieplnej, °C	25			35			70		
	E _{kor} , mV	I _{kor} , A/cm ²	v _{kor} , mm/rok	E _{kor} , mV	I _{kor} , A/cm ²	v _{kor} , mm/rok	E _{kor} , mV	I _{kor} , A/cm ²	v _{kor} , mm/rok
as quenched	-1067	0,153	2,052	-1140	0,166	3,626	-1026,7	0,0004	5,166
350	-1050	0,090	1,215	-998	0,144	1,927	-1034	2,389	35,2
375	-1048	0,082	1,105	-1193	0,047	0,635	-1047	0,538	39,44
400	-1127	0,009	0,121	-1102	0,023	0,310	-1161	0,070	0,981
425	-1074	0,017	0,231	-1100	0,044	0,586	-1063	0,152	1,932
450	-1132	0,028	0,147	-1131	0,012	0,164	-1150	0,410	1,65
475	-1077	0,006	0,079	-1123	0,018	0,248	-1123	0,082	0,983
500	-1005	0,006	0,082	-1073	0,008	0,107	-1095	0,065	0,882
525	-1016	0,010	0,131	-1040	0,010	0,123	-1089	0,015	0,198
550	-1071	0,010	0,136	-1047	0,023	0,311	-1085	0,012	0,159

Tablica 3

Wartości parametrów korozyjnych stopu Fe78Si13B9 badanego w 0,5 M roztworze NaCl, otrzymane w oparciu o "Ist Stern method – Tafel extrapolation"

T	Temperatura roztworu, °C								
obróbki cieplnej, °C	25			35			70		
	E _{kor} , mV	I _{kor} , A/cm ²	v _{kor} , mm/rok	E _{kor} , mV	I _{kor} , A/cm ²	v _{kor} , mm/rok	E _{kor} , mV	I _{kor} , A/cm ²	v _{kor} , mm/rok
as quenched	-735	0,085	0,987	-717	0,088	1,09	-733	0,089	1,010
350	-703	0,027	0,364	-690	0,025	0,334	-767	0,180	2,410
375	-672	0,003	0,164	-1083	0,015	0,198	-781	0,147	2,011
400	-689	0,012	0,041	-674	0,013	0,111	-768	0,131	1,754
425	-595	0,009	0,117	-684	0,019	0,263	-779	0,128	1,731
450	-656	0,008	0,110	-598	0,022	0,292	-744	0,073	1,012
475	-610	0,016	0,185	-600	0,041	0,556	-750	0,062	1,345
500	-661	0,007	0,080	-558	0,026	0,347	-754	0,058	1,520
525	-539	0,003	0,047	-603	0,023	0,307	-688	0,042	0,490
550	-544	0,005	0,064	-693	0,009	0,332	-659	0,044	0,580

Zależność jaka istnieje między temperaturą obróbki cieplnej stopu Fe₇₈Si₁₃B₉ a oszacowaną z ekstrapolacji Tafela szybkością korozji w różnych temperaturach roztworu zawierających siarczany lub chlorki przedstawiono na rysunkach 7 i 8.

Rysunek 7. Zależność temperatury obróbki cieplnej i szybkości korozji vkor stopu Fe78Si13B9 badanego w 0,5 M roztworze Na2SO4

Rysunek 8. Zależność temperatury obróbki cieplnej i szybkości korozji v_{ko}r stopu Fe₇₈Si₁₃B₉ badanego w 0,5 M roztworze NaCl

Szybkość korozji stopu o strukturze amorficznej badanego w roztworach siarczanów i chlorków w temperaturach 25 °C i 35 °C była większa niż szybkość korozji stopu obrobionych cieplnie w całym zakresie temperatur. Podczas obróbki cieplnej amorficznego

stopu Fe₇₈Si₁₃B₉ w zakresie temperatur od 350 °C do 425 °C zachodzi relaksacja strukturalna, a objętość nadmiarowa (stężenie mikropustek) zmniejsza się. Zanikanie mikropustek oraz relaksacja naprężeń występujących w fazie amorficznej jest dominującym procesem powodującym poprawienie przenikalności magnetycznej oraz odporności korozyjnej [2,3]. Relaksacja strukturalna zmniejszając energię swobodną układu amorficznego, powoduje zmniejszenie reaktywność stopu i wzrost jego chemicznej stabilności. Wyniki uzyskane dla stopu Fe₇₈Si₁₃B₉ badanego w roztworach siarczanów i chlorków w temperaturze 25 °C i 35 °C. można próbować interpretować w oparciu o zachodzące w nim zjawiska w trakcie obróbki cieplnej w zakresie temperatur od 350 °C do 425 °C.

Wydaje się, że obróbka cieplna prowadząca do powstania struktury krystalicznej złożonej z fazy αFe(Si) oraz Fe₃B powinna wpłynąć niekorzystnie na odporność korozyjną stopu Fe₇₈Si₁₃B₉ badanego w roztworze siarczanów lub chlorków w temperaturze 25 °C i 35 °C ponieważ struktura stopu nie jest jednofazowa. Jednak wartość oszacowana prędkości korozji stopu po obróbce cieplnej w temperaturze 525 °C i 550 °C wskazuje, że stop ten koroduje ze zbliżona predkościa jak stop obrobiony cieplnie w temperaturach od 450 °C do 500 °C. Obecność fazy αFe(Si) prawdopodobnie sprzyja dobrej odporności korozyjnej taśm obrobionych cieplnie w temperaturach 525 °C i 550 °C. W fazie αFe(Si) obserwowano duże stężenie krzemu nawet do 20 % [1, 6, 7]. Względnie dobra odporność korozyjna po wytworzeniu struktury krystalicznej w pierwotnie amorficznej strukturze stopu typu Metglas została potwierdzona także badaniami prezentowanymi w pracach [12, 13]. W pracach tych takie zachowanie elektrochemiczne stopu tłumaczono tym, że krzem rozpuszczony w fazie αFe(Si) szybciej wytwarza na powierzchni ochronną warstwę tlenków niż krzem zawarty w amorficznej fazie ponieważ ma szansę na szybszą dyfuzję w stronę powierzchni. Ponadto prawdopodobną przyczyną małej prędkości korozji stopów zarówno o strukturze nanokrystalicznej (faza amorficzna + faza $\alpha Fe(Si)$) jak i krystalicznych ($\alpha Fe(Si) + Fe_3B$) typu Metglas może być istnienie dużej ilości granic między fazami, które stają się drogami ułatwionej dyfuzji atomów krzemu [12, 13].

Obróbka cieplna prowadzona w temperaturach 350 °C do 400 °C nie wpływa na poprawienie zmniejszenie szybkości korozji stopu, który został poddany działaniu roztworu korozyjnego o temperaturze 70 °C. Zatem relaksacja strukturalna fazy amorficznej pogarsza odporność korozyjną próbek korodowanych w chlorkach i siarczanach w temperaturze 70 °C. Wartość oszacowanej szybkości korozji próbek stopu obrobionych cieplnie w zakresie temperatur 400 °C do 550 °C badanych w 0,5 M Na₂SO₄ w temp. 70 °C była zbliżona do wartości szybkości korozji próbek badanych w temperaturze 25 °C i 35 °C.

Próbki obrobione cieplnie w zakresie temperatur 350 °C do 425 °C badane w roztworach chlorków o temperaturze 70 °C charakteryzowały się znaczną szybkością korozji. W wyniku przeprowadzonej obróbki cieplnej w temperaturze 450 °C pojawiła się faz αFe(Si) co sprzyja zmniejszeniu prędkości korozji próbki stopu Fe₇₈Si₁₃B₉ w roztworach chlorków (rysunek 8). Następnie obserwowany jest wzrost szybkości korozji (obróbka cieplna w temperaturze 475 °C i 500 °C). Obróbka cieplna w temperaturach 525 i 550°C prowadząca do powstania fazy αFe(Si) o wielkości ziarna około 40nm poprawia odporność korozyjną stopu badanego w roztworach chlorków o temperaturze 70 °C.

4. WNIOSKI

W zależności od temperatury obróbki cieplnej stopu Fe₇₈Si₁₃B₉ i temperatury roztworu korozyjnego, obserwuje się różne jego zachowanie elektrochemiczne, a mianowicie:

- Obróbka cieplna prowadząca do relaksacji strukturalnej amorficznej fazy stopu Fe₇₈Si₁₃B₉ zmniejsza jego szybkość korozji w 0,5 M roztworze Na₂SO₄ i 0,5 M NaCl w temperaturach 25 °C i 35 °C, natomiast zwiększa szybkość korozji w 0,5 M roztworze Na₂SO₄ i 0,5 M NaCl w temperaturze 70 °C.
- Obróbka cieplna w zakresie temperatur 450 °C do 500 °C prowadząca do wytworzenia w stopie fazy αFe(Si), a także w temperaturach 525 °C i 550 °C prowadząca do powstania oprócz αFe(Si) również fazy Fe₃B, nie powoduje zwiększenia prędkość korozji w porównaniu do stanu amorficznego stopu badanego w 0,5 M roztworze Na₂SO₄ i 0,5 M NaCl w temperaturach 25 °C, 35 °C i 70 °C.

LITERATURA

- 1. M.E. Mc Henry, M.A. Willard, D.E. Laughlin: Progress in Materials Science, 44 (1999)
- 2. J. Rasek: Wybrane zjawiska dyfuzyjne w metalach krystalicznych i amorficznych, Wydawnictwo Uniwersytetu Śląskiego, Katowice (2000)
- 3. J. Rasek: W kręgu krystalografii i nauki o materiałach, Wydawnictwo Uniwersytetu Śląskiego, Katowice (2002)
- 4. J. Szczygłowski: Modelowanie obwodu magnetycznego o jednorodnej strukturze materiałowej, Politechnika Częstochowska, seria monografie nr 80 (2001)
- 5. R. Zallen: Fizyka ciał amorficznych, PWN Warszawa (1994)
- 6. Handbook of Nanostructured Materials and Nanotechnology, vol 1 Syntethesis and Processing, Academic Press (2000), rozdział 11 pod red. Chang I.T.H.
- 7. M. Soiński: Materiały magnetyczne w technice, Biblioteka COSiW SEP, Wydawnictwo Bellona Warszawa (2001)
- 8. E. Łunarska: Ochrona przed korozją nr 8 (2001)
- 9. W. Poniecki: Prace Instytutu Elektrotechniki, 213 (2002)
- 10. R. Wilczyński: Prace Instytutu Elektrotechniki, 216 (2000)
- 11. K. Gumiński: Wykłady z chemii fizycznej PWN Warszawa (1973)
- 12. C.A.C. Souza, S.E. Kuri, M.F. de Oliveira, J.E. May, W.J. Botta, N.A. Mariano, C.S. Kiminami: J. Non-Cryst. Solids 273 (2000)
- 13. H.Y.Tong, F.G.Shi, J.Lavernia: Scripta Metall. Mater. 32 (1995)
- 14. A. Pardo, E. Oteero, M.C. Merino, M.D. Lopez, M. Vazquez, A. Agudo: J. Non-Cryst. Solids 287 (2001)
- 15. C.A.C.Souza, C.S.Kiminami: J. Non-Cryst. Solids 219 (1997)
- 16. D. Szewieczek, J. Tyrlik Held, Z. Paszenda: J. Mat. Proc. Techn. 78 (1998)
- 17. C.A.C. Souza, F.S. Politi, C.S. Kiminami: Scripta Mater. 39 (1998)
- 18. I. Chattoraj, K.R.M. Rao, S. Das, A. Mitra: Corrosion Science 41 (1999)

19. Z. Bojarski, E. Łągiewka: Rentgenowska analiza strukturalna, Wydawnictwo Uniwersytetu Śląskiego, Katowice (1995)