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 The arbitrary Lagrangian-Eulerian method is nowdays very useful in nonlinear problems 
due to its capability to use advantageous of both Lagrangian and Eulerian approaches. In this 
paper, an ALE technique is developed based on the cone-cap plasticity model in simulation of 
forming processes. The ALE formulation and its FE discretization are described. Numerical 
example is provided to illustrate that the ALE method can be effectively used to solve 
problems which will encounter some difficulties in Lagrangian and Eulerian formulation. 
 
 
1. INTRODUCTION 
 
 In numerical simulation of forming processes, there are two approaches to solve problems, 
Lagrangian and Eulerian methods. In Lagrangian approach, the mesh nodes are implemented 
to material points, therefore this formulation is well suited for simulation of problems 
containing materials with path dependent behavior, and free surface motion [1]. However, the 
method suffers from numerical difficulties in problems with very large deformation, because 
the mesh may undergo severe distortion, due to this fact that elements are deformed with 
material deformation [2]. In Eulerian approach, the mesh is fixed in space and material flows 
through it, which is very suitable for problems with very large material deformation such as 
fluid dynamics [3]. But the very important disadvantageous of this method is that it is less 
suited for history dependent material and problems with free boundary motion. It can be 
concluded that neither Lagrangian nor Eulerian formulation alone is well suited for simulation 
of processes involving large deformation and free boundary motion.  
 The basic idea of ALE technique is to combine advantageous of both Lagrangian and 
Eulerian approaches. In this method, the reference configuration is used for describing the 
motion, instead of material configuration in Lagrangian, and spatial configuration in Eulerian 
formulation [4]. This formulation introduces some convective terms in the finite element 
equations and consist of two phases. In Lagrangian phase, the mesh and material movements 
are identical. In Eulerian phase, it is allowed the mesh to have an arbitrary motion, 
independent of material motion, keeping the mesh regular. In this study, each time step is 
analyzed according to Lagrangian phase until required convergence is attained. Then, the 
Eulerian phase is applied to keep mesh configuration regular. Because of relative 
displacement between mesh and material, all dependent variables such as stress and strain are 
convected through the Eulerian phase. 
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2. ALE FORMULATION 
 
 In the ALE formulation there are three domains; material domain Ω0 , spatial domain Ω, 
and reference domain Ω̂ , which is also called ALE domain. These domains are mapped by 
transformation equations 
 

 )t  ,  Xxx ( =  ,  )t  ,  (  �xx =  (1) 
 

which give the spatial position of material point X and grid point χχχχ, respectively. The material 
velocity v  and mesh velocity v̂  are time derivatives of x, in which X or χχχχ are fixed, 
respectively. Convective velocity is defined to be the relative motion between the material 
and mesh as 
 

 vvc ˆ -   =  (2) 
 

 Similarly acceleration a can be expressed as 
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The first term in right hand side of equation (3) is the local acceleration and the second term is 
called convective acceleration. 
 
2.1. Momentum equation 
 

 In the ALE formulation, the momentum equation is obtained by substituting a from 
equation (3) into common momentum equation in Lagrangian formulation which leads to 
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where ρ  is the density, σσσσ  the cauchy stress and b the body force. In forming processes, the 
loads are applied slowly and inertia forces are relatively small in comparison to other terms in 
equation (4), thus acceleration may be omitted and the balance equation can be written as 
 

 0b ijji, =+ ρσ   (5) 
 

The above equation shows that there are no convective term in balance equation, which is 
common between the Lagrangian, Eulerian and ALE formulations. 
 
2.2. Constitutive equations  
 

 In nonlinear solid mechanics, the material rate of stress Xt
�

∂
∂  is usually related to the 

deformation history and current state of stress as 
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In order to obtain the constitutive equations in ALE formulation, the material rate of stress 
may be related to reference rate of stress by adding a convective term accounting for relative 
motion between material point and grid point as  
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3. MESH MOTION 
 
 In the ALE analysis, there are two sets of motion, the material motion v  and mesh motion 
v̂ . Although mesh motion in general is independent from material motion, the boundary of 
ALE and material domains should be coincide i.e. at each boundary point 
 

 0    )ˆ - ( =nvv  (8) 
 

where n is the normal vector of boundary points. In addition, the motion of interior grid and 
material points, is related by a linear function as 
 

  vv    ˆ B  a +=  (9) 
 

where a and B are the vector and matrix of constant scalars, respectively. It must be noted that 
the Lagrangian motion is a special case of above scheme. Considering { }0  a =  and I B = , with 
I denoting the identity matrix, it yields to vv ˆ  = . The Eulerian motion can be also obtained by 
assigning { }0  a =  and [ ]0  B = , which yields to 0ˆ =v . 
 
 
4. TANGENTIAL STIFFNESS MATRIX 
 
 The derivation of the tangent stiffness matrix for the ALE description can be obtained by 
adding the transport terms to general Lagrangian tangential stiffness as 
 

   c K  v K f alelagintd +=   (10) 
 

where intdf  is the rate of internal nodal forces and lagK  is the stiffness matrix in Lagrangian 
formulation, which consists of both geometrical and material stiffness. aleK  denotes the ALE 
stiffness matrix, in contrast to lagK , is a non-symmetrical matrix. In addition, the gradients of 
the stress may be appeared in aleK whereas it doesn’t exist in lagK . 
 
 
5. NUMERICAL SIMULATION RESULTS 
 
 In order to illustrate the applicability of the proposed model, the simulation of a coining 
problem is analyzed numerically. A rectangular plate with the width of  60 mm and height of 
12.5 mm is deformed by a rigid frictionless punch, as shown in Figure 1. The von-Mises 
elasto-plastic model is employed with the Young modulus of 210 GPa, Poisson ratio of 0.3, 
yield stress of 240 MPa and hardening parameter of 1 GPa. A plane strain analysis is 
performed with applying prescribed boundary displacement at the nodes under the punch to 
model a 40% height reduction.  
 The simulation of this problem using the Lagrangian formulation will pose two difficulties. 
First, applying prescribed nodal displacement at the relevant nodes results to unrealistic 
analysis due to increase of the width of punch and thus, the lateral displacement of material 
points. This error may be overcome by using a contact algorithm. The second difficulty is that 
the Lagrangian approach leads to highly distorted mesh under the punch. The application of 
contact algorithm into the Lagrangian formulation causes mesh distortion and convergence 
problems, which yields to fluctuation in force-displacement diagram. 
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 The ALE method will overcome the above difficulties. Figure 2 shows the deformed mesh 
after 5 mm reduction in height using ALE approach. Also plotted in this figure is the variation 
of effective plastic strain for the coining test. The predicted punch force versus displacement 
is presented in Figure 3. As can be observed, the fluctuation does not happen in this curve. 

Figure 1. Coinig problem; Finite element mesh 

  (a)  

 (b)  

 
Figure 3. The punch force versus displacement curve 
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