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Abstract: In this paper the axioms, of Axiomatic Design, are extended to the non-
probabilistic and repetitive events. The idea of information, in the classic theories of Fisher 
and Wiener-Shannon, is a measure only of probabilistic and repetitive events and can be 
extended the non-probabilistic and repetitiveness events. On the basis of Laplace’s Principle 
of insufficient knowledge, the MaxInf principle is defined for choose solutions in absence of 
knowledge. In this paper the value of information, as a measure of equality of data among a 
set of values, is applied in Axiomatic Framework for data analysis in such cases in which the 
number of Functional Requirements (FRs) is greater than the Design Parameter’s (DPs) one.  

As example is studied an application on  potential failure mechanisms in which the number 
of DPs is lower then the number of FRs, and the coupled design cannot be satisfied.  
 
Keywords: Axiomatic Design, Non-Probabilistic Information, MaxInf, Entropy, Failure 
mode Analysis 
 
1. INTRODUCTION 

 
The distance between two probability distribution p and q is given by the distance D(p:q). 

If q is an priori distribution, then to select the distribution p closeness to q is needed. For 
satisfying the constraints of probability distribution it’s possible to use the measure of cross-
entropy developed by Kullbach and Leibler [3] 
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D(p:q) is the distance of the a priori distribution q from the distribution p. In order to 

optimise a distribution it’s possible to use the minimum cross entropy principle: From all 
probability distribution satisfying given constraint we must choose the distribution p that 
minimise the measure D(p:q). This is the well know MinEnt principle. If the a priori 
distribution is of maximum uncertainty, q =
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lnp  is the Shannon's entropy. Therefore, when the a priori distribution q has the 

maximum uncertainty, for minimising D(p:q) it’ s possible to choose values of p maximising 
entropy S(p). This is the Jaynes' maximum Entropy principle (MaxEnt) [1]. 

Jaynes, the principal proponent of MaxEnt Principle in axiomatic way, suggests that in all 
probability distribution, when there’s only the constraint that { }0≥ip  and � =

i ip 1, it’ s 

possible to choose that one has maximum entropy. The use of probability distribution with 
less then maximum entropy implies the use of additional information [3].  
 
2. AXIOMS OF NEW THEORY OF INFORMATION (EXTENDED THEORY) 
 

The idea of information, in the theories of Fisher and Wiener-Shannon [2], is a measure 
only on probabilistic and repetitiveness events. The idea of information is broader than the 
probability and the axioms of Wiener–Shannon can be extended to the non-probabilistic and 
repetitiveness events [10].  
 
2. 1. New Theory of Information in Metric Space 

Using the information axioms it is possible to develop models for information very useful 
in applications. For every event ℑ∈A  it’ s possible to have a measure of information using 
the mathematical expression: 
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This definition of information has a natural application in metric space [7]. The 
information can be evaluated by the probability and by the non-probabilistic measures of 
diameters. So it’s possible to have the measure of information from non-probabilistic data.  
  
2. 2. The Extended Principle of Max-Information (MaxInf) 

 It is possible to define a new principle on basis of the New Theory of Information. On the 
analogy of MaxEnt principle, the name is Max Information Principle (MaxInf) [6]. In the New 
Theory of Information, instead of probability, it is possible to utilize of a finite number of 
appropriate proportion subject to a set of constraints that add up to one. In observance of the 
Axioms, let nd,...,d,d 21  be n non-negative real numbers, let [3]  
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It’ s possible to use the measure of information the relation  
 

J(ρ)= ( )nJ ρρρ ,....,, 21 = 
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So that: J(ρρρρ) is maximum when n.... ρρρ ============ 21 , J(ρ) is minimum when: i∀ only one 

number is ≠≠≠≠  zero; in metric space, using Euclidean's distances the information may be 
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The value of information J(ρ) is a measure of equality of numbers among themselves. 
Applying the same formalism of MaxEnt Principle it is easy to define the MaxInf Principle on 
the basis of so called Laplace’s Principle of insufficient knowledge[5][6]. MaxInf Principle: 
Out of all knowledge, choose the solution nearest to the uniform distribution of information.  
In the situations in which there are no reasons to prefer a solution, it is better choose the 
solution with uniform distribution, or one close to the uniform distribution of information. 
 
3. AXIOMATIC DESIGN FOUNDAMENTALS 

 
Nam P. Suh (1990) proposes an axiomatic method for highly complex designs. The design 

process optimizes elements using a set { }iFR of functional requirements and a set { }jDP of 

physical parameter [8, 9].  
For comparing two design, on the basis of Suh axioms, one can compare the information 

content of the two design which can satisfy the functionally parameters. The information 
content can be described by means similar to the Wiener-Shannon’s theory [4].  
When the number of  sDP  is less then the number of sFR , then the coupled design cannot be 

satisfied. Suppose that there is a set of three{ }1 2 3, ,FR FR FR  and a set of two{ }1 2 , DP DP , 

then the equation in matrix notation is  
 
 

1 11 12
1

2 21 22
2

3 31 32

FR A A
DP

FR A A
DP

FR A A

� � 
 �
� �	 	 � �=
 � 
 �� �
� �	 	 � �� � � �

                                (7)  

 
 
4. DESIGN WITH NUMBER OF DPS LOWER THAN NUMBER OF FRS 

 
From MaxInf it’ s possible to find the max value for J when  
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The max of information is obtained when the approximating function ( )i jFR f DP=  has the 

same error .  
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The deviations of ( )i jFR f DP= evaluated at certain abscissa and the given ordinate 

corresponding to the same abscissa:  
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From the solution of the linear system bxA ====  we have 
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 it’ s possible to calculate the value of TFR∆  from which can be valuated the approximation 

with the max information.  
 

5. APPLICATION TO FAILURE MODE ANALYSIS 
 

The example, shown in this paper, is a case study extracted from table of the load 
conditions which cause failure mechanisms. The “mechanism” is a hollow shafting quill of a 
gearbox that works in severe conditions of steady-state temperature, of thermal stresses due to 
temperature oscillation and of vibration. For that kind of mechanism the failure mode analysis 
brings to define the rectangular Action matrix [A], because four kind of failure can occur in 
that kind of load conditions. Translating that problem in Axiomatic terms It’s possible to say 
that there are: 

• four FRs (effects) that are to be fulfilled  
• three DPs (causes) to control the behaviour of failure mode 
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The axiomatic system can be easily solved for obtaining the vector of solution under 
tolerance  
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T321
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FR,DP,DP,DP  

 
 
6. CONCLUSION 

 
Using the idea of information, in a larger way than the idea of probability, it is possible 

the formulation of an Extend Theory of Information for probabilistic and non-probabilistic 
events. When number of  s sDP FR< , then the DPs are insufficient to achieve all the sFR . If is 

imposed to the domain of sFR  a set of tolerance, it is possible to carry out a mathematical 

transformations from which it is possible to obtain all lacking values of DPs. The solution, 
consistent with the values of constraints, is obtained selecting the solution that maximize the 
Wiener-Shannon information. In conclusion it is possible to assert that: 

When number of  s sDP FR< , using MaxEnt Principle, it is possible to obtain an 

approximate solution compatible with boundary conditions.  
That concept was applied to a particular case of Design in which the design matrix 

represents the Action Matrix between causes that determine a failure and effect that are 
caused from them.  
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