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Abstract: The method presented in the paper makes it possible to determine the mass 
concentrations of the alloying elements for steels with the required curve of hardness changes 
versus cooling rate. Search for the optimum chemical composition is carried out in two stages. 
The first stage consists in preparing the data file consisting of chemical compositions of steels 
and calculated curves of hardness change versus cooling rate. Hardness of steel cooled from 
the austenitising temperature is calculated with the model using the artificial neural networks. 
At the second stage the chemical composition of steel is searched for - the closest to the 
assumed criterion. 
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1. INTRODUCTION 
 

The CCT diagrams containing the quantitative data pertaining to the dependence of steel 
structure and hardness on temperature and time of the supercooled austenite transformations 
are used for determination of the structure and hardness of the quenched, normalised, or fully 
annealed steels. Locations and shapes of the supercooled austenite transformations’  curves, 
plotted on the CCT diagrams, depends mostly on the chemical composition of the steel, extent 
of austenite homogenising, austenite grain size, as well as on austenitising temperature and 
time. Fluctuations of the chemical composition of steel, allowable even within the same steel 
grade, and also changes of the austenitising conditions make that using the CCT diagrams 
published as catalogues does not provide reliable information on austenite transformations 
during cooling [1]. In [2-4] the modelling methodology was worked out for relationships 
between the chemical composition and austenitising temperature, and kinetics of the 
supercooled austenite transformations during continuous cooling, using neural networks as 
the computer science tool. 

Neural networks have become, since several years, the tool being used more and more in 
the area of Materials Engineering, which is confirmed by many publications presenting 
research results obtained in many scientific centres in the world. Multi-network structures are 
used more and more often in designing the classifiers employing the artificial neural 
networks. This solution, called most often modular neural network, consists in employing 
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many neural networks independently developed and in determining the response of the entire 
system using the supervisor module. In many complex issues a network mapping its specific 
fragment only of the modelled problem fulfils its task much better. Using the modular 
networks of  less complex structure prevents many a time from the excessive matching the 
network to the data from the training set, which leads to losing by  the network its capability 
to generalise the acquired knowledge. Neural networks linked in parallel may be also used to 
develop the classifier, where the response of the entire system is determined using the 
accordingly designed decision block. However, employment of the collective decision of the 
modular neural network gives hope that it will be subjected to a smaller error than the 
response of a single network. [5] 
 
2. MATERIAL AND EXPERIMENTAL METHODOLOGY 
 

The data set was developed basing on literature data, including chemical compositions, 
austenitising temperature (TA) and the CCT diagrams of the constructional and engineering 
steels. The obtained curves were worked out, assuming mass fractions of the alloying 
elements as the criterion. Basing on the collected data it was assumed in addition that total of 
the mass fractions of manganese, chromium, nickel, and molybdenum does not exceed 5%. 
The ranges of the assumed mass fractions of elements and austenitising temperature are 
included in Table 1. 
 
Table 1 
Ranges of mass concentrations of elements and austenitising temperature for the analysed steels 

Mass fractions of elements, % 

R
an

ge
 

C Mn Si Cr Ni Mo V Cu 
Austenitising 

temperature TA, °C 

min 0.08 0.13 0.12 0 0 0 0 0 770 
max 0.77 2.04 1.90 2.08 3.65 1.24 0.36 0.3 1070 

 
The method presented in the paper makes it possible to determine the mass concentrations 

of the alloying elements for steels with the required curve of hardness changes versus cooling 
rate obtained during the continuous cooling from the austenitising temperature. Designing the 
optimum chemical composition is carried out in three stages: 

• preparing the database containing information on mass concentrations of the elements, 
• calculating the austenitising temperature (temperature Ac3+50°C) using the neural 

network model described in [4], 
• calculating hardness of steel cooled continuously from the austenitising temperature for 

various cooling rates using the model developed employing the neural networks [6], 
• selecting the chemical composition of steel meeting the assumed criterion. 
 

3. CALCULATION OF STEEL HARDNESS 
 

 Determining the curve of hardness changes versus cooling rate, according to the method 
proposed in the paper, calls for determining the types of the structural constituents that occur 
in the steel after cooling from the austenitising temperature. The types of the structural 
constituents were determined using four bivalued nominal variables containing the 
information if the following constituents are present in the structure: ferrite, pearlite, bainite, 
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martensite. A classifier had to be developed, to obtain this information, using as input data the 
mass concentrations of the particular alloying elements, austenitising temperature, and 
cooking rate. The following assumptions of the neural network based classifier were analysed:  

• neural network analyses occurrences of four structural constituents (four neurons in the 
output layer), 

• neural network recognizes only one structural constituent of the supercooled austenite 
transformations in the entire range of cooling rate, 

• neural network recognizes only one structural constituent of the supercooled austenite 
transformations in the limited range of cooling rate. 

In each case possibility of employing the modular neural networks was analysed. To select the 
optimum method of choosing the classifier’s final response the following were checked: 

• method based on the absolute majority of votes of neural networks included in the 
module 

• method of the vote priority of the network providing a more reliable response, where the 
response reliability was determined basing on the activation values of the output layer 
neurons, 

• method consisting in assigning weight values to responses of the particular networks, 
depending on the number of errors made. 

Data required for model development were prepared basing on the CCT diagrams. Mass 
concentrations of the particular alloying elements, cooling rate, and austenitising temperature 
were used as input data. Influence of copper was omitted in case of the network with nine 
neurons in the input layer. The ranges of mass concentrations of the particular alloying 
elements are presented in Table 1. The numbers of cases in the sets: training, validating and 
the test one were respectively: 2580, 1290, 1290.  The biggest number of the correct 
responses was obtained using the modular neural networks forecasting a single transformation 
in the full range of cooling rate. The particular classifiers were developed using the 
unidirectional neural networks of the MLP type (multilayer perceptron)  with one or two 
hidden layers. The voting method based on the absolute majority of votes was chosen. 
Specifications of the particular classifiers used for forecasting occurrences of the particular 
structural constituents in steel are presented in Tables 2-5 . Figure 1 presents the comparison 
of the experimentally determined and calculated ranges of occurrences of the particular 
transformations depending on the average cooling rate for the steel from the verifying set. 
 
Table 2. 
Specification of the classifier forecasting occurrence of ferrite in the structure of steel cooled 
from the austenitising temperature 
 1 2 3 4 5 6 7 8 9 10 

Network structure 9-18-17-
1 

9-12-1 9-14-1 
10-27-19-

1 
10-20-14-

1 
10-8-5-1 

9-16-12-
1 

9-18-1 9-13-1 
9-20-17-

1 

Training method/ No of 
epochs 

CG 
245 

CG 
258 

CG 
297 

BP 
250 

CG 
360 

BP 
272 

BP 
148 

CG 
187 

CG 
235 

CG 
331 

Training set 99.1 

Validating set 97.4 Cc, % 

Testing set 97.7 

Cc - Coefficient of the correct classifications for the modular neural networks, BP – back propagation method; CG - conjugate 
gradients method 
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Table 3. 
Specification of the classifier forecasting occurrence of pearlite in the structure of steel cooled 
from the austenitising temperature 
 1 2 3 4 5 6 7 8 9 

Network structure 10-20-11-
1 

10-5-2-1 10-25-1 10-31-1 10-17-5-1 
10-17-10-

1 
10-19-16-1 10-8-5-1 

10-25-10-
1 

Training method/ No 
of epochs 

BP 
131 

CG 
127 

CG 
149 

CG 
91 

BP/111; 
QN5 

BP 
232 

CG 
77 

BP/174; 
CG23 

BP/60; 
QN11 

Training set 98.0 

Validating set 97.1 Cc, % 

Testing set 97.0 

QN - quasi-Newton method 
 

Table 4. 
Specification of the classifier forecasting occurrence of bainite in the structure of steel cooled 
from the austenitising temperature 
 1 2 3 4 5 6 7 8 9 

Network structure 10-32-6-1 
10-26-10-

1 
10-31-25-

1 
10-47-37-1 10-20-14-1 9-23-19-1 

10-31-29-
1 

9-20-18-1 9-45-32-1 

Training method/ No of 
epochs CG/176 CG/198 CG/218 CG/165 

CG/166; 
BP/96 

BP/268 
CG/157; 
BP/77 

CG/257; 
BP/173 

BP/312 

Training set 97.8 

Validating set 95.5 Cc, % 

Testing set 96.3 
 

Table 5. 
Specification of the classifier forecasting occurrence of martensite in the structure of steel 
cooled from the austenitising temperature  
 1 2 3 4 5 6 7 8 9 

Network structure 10-20-13-
1 

10-10-1 10-17-1 10-20-14-1 10-20-18-1 10-18-1 
10-24-17-

1 
10-19-6-1 

10-13-12-
1 

Training method/ No of 
epochs CG/241 CG/103 CG/98 CG/104 CG/112 CG/90 BP/76 BP/150 

BP/63; 
CG/94 

Training set 98.7 

Validating set 97.9 Cc, % 

Testing set 97.9 

 
 

Figure 1. Comparison of the experimentally determined and calculated ranges of occurrences 
of the particular structural constituents depending on  cooling rate for steels with the 
following compositions: a) 0.38% C, 0.74% Mn, 0.26% Si, 0.26% Ni, 0.90% Cr, 0.04% Mo, 
0.17% Cu, austenitised at temperature of 880°C; b) 0.38% C, 0.41% Mn, 0.21% Si, 0.03% Ni, 
1.29% Cr, 0.05% Cu, 0.12% V, austenitised at temperature of 925°C 
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4. CALCULATION OF STEEL CHEMICAL COMPOSITION 
 

To prepare the database containing the information about the randomly selected chemical 
compositions of steel, taking into account limitations presented in Table 1, the computer 
program was developed generating random chemical compositions of steel basing on user 
specified parameters: 

• range of mass concentrations for each element, 
• number of cases, 
• cooling time from the austenitising temperature to the ambient temperature. 
Austenitising temperature was determined as the Ac3+50°C temperature for the prepared 

set of 6500 various chemical compositions of steel and next hardness was calculated for ten 
assumed average cooling rates. Three numerical procedures were developed making it 
possible selection of the optimum chemical composition in respect to one of the three search 
criteria: 

• required hardness for the assumed cooling rate, 
• required hardness in the assumed range of cooling rate changes, 
• required curve of hardness change in the entire range of cooling rate changes. 
In the first method, the chemical composition of steel is searched, for which the module 

value of difference between the calculated and expected hardness (for the assumed cooling 
rate) is the smallest. In the second method, the chemical compositions of steels are searched, 
for which hardness is within the range defined by specifying the minimum and maximum 
values at the assumed cooling rate range. In the third method, calls for specifying the expected 
hardness for the successive ten values of cooling time from the austenitising temperature to 
100°C. The chemical composition of steel is searched, for which the sum of the absolute 
differences between the calculated and expected hardness, for the successive cooling time 
values, is the smallest. The values of the assumed hardness values, calculated hardness values, 
types of structural constituents occurring in the steel after cooling from the austenitising 
temperature and calculated chemical compositions of the steels are presented in Table 6. 
 
Table 6. 
Chemical composition of steel calculated for the assumed hardness versus cooling time from 
the austenitising temperature 
Cooling time, s 3 20 50 100 250 500 1000 5000 20000 105 

Predetermined hardness, HV 550 540 480 420 360 320 290 230 210 200 

Calculated hardness, HV 560 552 473 417 353 312 277 240 215 207 

Error, HV 9.8 12.0 7.4 2.9 7.2 8.2 12.6 10.2 5.1 7.1 

Predicted mass fractions of elements, % 

C Mn Si Cr Ni Mo V Cu TA 

0.2 0.63 0.43 0.53 0.21 0.24 0.29 0.03 912 

 
Figure 2 present comparison of the required curves of hardness changes versus cooling 

time with the curves calculated for the assumptions presented in tables 7 respectively. 
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Figure 2. Comparison of the assumed and calculated curves of hardness change versus 
cooling time 
 
5. CONCLUSIONS 
 

The appropriate selection or design of a material meeting the assumed requirements 
features an essential stage in the contemporary design process of machines and their elements. 
The extensive set of the available materials and the need for the multi-criteria optimization of 
their selection causes employment of the computer aided material selection becoming a 
necessity, especially in the presence of the growing demands that the contemporary products 
have to satisfy. The computer aided materials selection system (CAMS) should have the 
auxiliary tools making possible, for instance such tasks as computer simulation of the 
chemical composition effect on the required properties or optimization of the feasible 
solutions basing on the assumed criteria - all these tasks are not supported by the engineering 
materials databases. Meeting the requirements mentioned above calls for the appropriate 
numerical model. 

 The model presented in the paper of the relationship between the chemical composition 
and austenitising temperature – and hardness of the machinery steels - and procedure making 
it possible to determine the chemical composition of the steel with the required hardness 
across the transverse section of the quenched or normalised element may become a part of the 
computer based steel selection system for elements of machinery and structures. 
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