

of Achievements in Materials and Manufacturing Engineering VOLUME 17 ISSUE 1-2 July-August 2006

Evaluation of possibilities for leaded brasses replacement

M. Kondracki*, J. Gawroński, J. Szajnar

Division of Foundry, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland * Corresponding author: E-mail address: marcin.kondracki@polsl.pl

Received 15.03.2006; accepted in revised form 30.04.2006

Materials

<u>ABSTRACT</u>

Purpose: Leaded brasses are most commonly used Cu alloys, especially for home fixture. High toxicity of lead to human caused tendency to eliminate lead additions from these alloys. In this work a discussion of solutions to this problem is shown and possibilities of leaded brasses replacement with multi – component non – leaded brasses.

Design/methodology/approach: In this work general properties of multi – component brasses are investigated (mechanical, technological and operating properties) as well as its structure and their correlation with chemical composition. Some interactions of additions are shown with physical and mathematical model of its influence on properties.

Findings: It was found that in a complex of additions (closed system) the interactions can be described by physical model and mathematical equations showing properties in function of chemical composition can be used to optimize chemical composition for engineering alloys with known properties.

Research limitations/implications: However introducing new elements to the system (chemical composition) will disturb the created models (physical and mathematical). It must be said that for investigated alloys optimal properties can be ensured using presented models.

Practical implications: Presented approach enables optimization of alloy properties for particular application. Properties can be introduced to the mathematical model which with use of optimization methods will return needed chemical composition.

Originality/value: Alloys engineered with use of presented approach have properties close to leaded brass with low increase in total production costs.

Keywords: Metallic alloys; Cu alloy; Non - leaded brass; Properties optimization

1. Introduction

Among cast Cu alloys the most important are brasses. About 20% of world Cu production is assigned for these alloys. Lead is a common addition to brasses (about 80% of Cu-Zn alloys is produced with lead addition – up to 3% mass) which ensures proper technological and operating properties like castability, corrosion resistance and most of all machinability. Leaded brasses are used in many fields, especially in fixture production.

High toxicity of lead caused a strong tendency to eliminate lead from all products being in contact with human. World Health Organization (WHO) worked out some recommendations for lead content in drinking water, to which lead penetrates from fixture elements made from leaded brasses. In many countries legal acts arose forcing fixture manufacturers to eliminate leaded brasses from fixture production [1-3].

First actions taken to prevent lead leakage form the brass fixture was to modified lead inclusions distribution and size [6, 11, 12]. In non-modified alloy lead inclusions are rather big and concentrated near the center of the casting. Modification with use

of elements which create with lead stable phases caused refinement of lead inclusions and equalization of their distribution. Lead leakage from modified alloys was too high and efforts were put in another direction. Some works described the process of casting inner surface passivation to eliminate lead from this region [6, 13] but other works show, that only lead grinded during machining is washed out. Castings passivated are more susceptible to dezincification. Passivation increases also the costs and time of production [6, 13]. Other works were aimed on finding element influencing brass properties similar to lead an was not toxic to human. The biggest interest was directed bismuth [1, 2, 6, 13]. In many cases it acts similar to lead and by many is seen as not-harmful to human. It must be said, that bismuth is in Cu alloys the most detrimental impurity. It causes dramatic increase in brittleness. Because of great wettability and low melting point it creates a thin film distributed around the growing crystals [1, 6, 13]. Such distribution deteriorate the mechanical properties of alloy. However it also causes reduction in cutting forces during machining and appropriate chip shape and size fig. 1 and 2) [1, 2, 6, 7, 13].

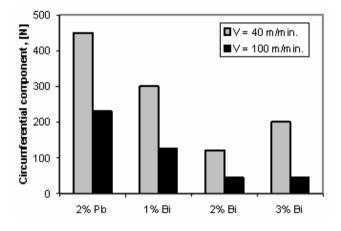


Fig. 1. Circumferential component of cutting force for various cutting speed and brasses with different additions [1]

To improve bismuth distribution some additions are introduced: P, Sn, In or Sb. They change the wetting angle and cause the bismuth to occur as globular inclusions. The best results are observed with use of In. Bismuth can be also introduced to the alloy as an compound with other elements: S, Se or Te. Alloys with Bi and Se (compound Bi_2Se_3 with 64% Bi and 36% Se mass content) additions have very similar properties to leaded brasses. These alloys are more susceptible to corrosion than leaded brasses and much more expensive. Moreover many studies show that bismuth is only slightly less harmful to human than lead (selenium is more toxic than lead) and with higher tendency to corrosivity their "ecological value" is very doubtful.

Few publications are dedicated to substitution of leaded CuZn alloys by multi – component brasses. The main reason is here the possibility of many phase transitions and synergic influence of alloy additions on structure and properties of the alloy. Precise knowledge about this influence and elements interactions would enable alloy properties control. Mathematical model for these interactions would enable optimization of alloy chemical

composition for particular application. Presented work show methodology and some results obtained in this field.

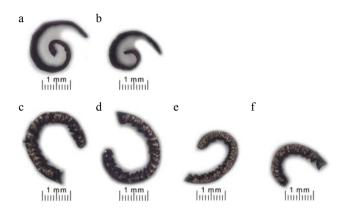


Fig. 2. Chip shape for CuZn alloys containing (in mass %): (a, b) 2% Pb, (c) 1% Bi, (d) 1,5% Bi, (e) 2% Bi, (f) 3% Bi [1]

2. Studies and results

In presented studies additions interactions and influence were investigated for multi – component brasses. Cu content was remained equal in all alloys (59% mass). To the alloy following addition were introduced: Al, Si, Ni, Fe, Sn and P. Alloy was prepared from pure elements (Cu99,99; Zn99,9; Sn99,9) or preliminary alloys (CuNi13, CuFe12, CuSi16, CuAl50, CuP10) in induction furnace according to brass technology. All casts were made up to the active experiment with changing chemical composition. During the studies different properties were observed to get the complete model of occurring interactions and their influence on alloy properties.

Chemical composition of investigated alloys was examined on rontgenographic spectrometer ALR type 8420+XRS. Precision of this apparatus was 0,15% mass for Cu content and 0,004% for other elements.

2.1. Crystallization process

For each alloy thermal and derivative analysis has been conducted [1, 4, 5, 10, 14, 15, 17,]. The scheme for this measurement is shown on fig. 3.

Fig. 3. Scheme for TDA apparatus: 1 - mould with NiCr - Ni thermocouple, 2 - A/C converter, 3 - computer system [5]

Figures 4 show cooling and crystallization curves for fixture brass with two – phase structure (α + β ' brass) wit indicated characteristic points on crystallization curve.

Data collected from TDA analysis can be used for observation of structure occurring in the alloy during solidification. With use of information about structural components quantity a mathematical model can be proposed for quantitative structure observation during that stage of alloy manufacturing [5, 17].

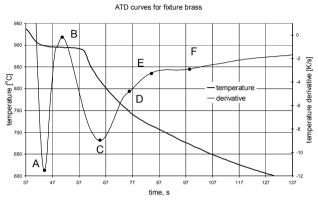


Fig. 4. Thermal and derivative analysis curves (cooling T(t) and crystallization dT/dt(t) curve) for two – phase brass (α + β '), letters indicate the characteristic points on crystallization curve

2.2.Structure

Structure of alloys was investigated using light microscopy, quantitative analysis with image analysis (Multiscan v13.01) and rontgenographic microanalysis on scanning microscope with EDAX attachment – used for structural components identification [4, 8, 9]. Fig. 5 shows structure of two – phase brass and fig. 6 of brass with intermetallic phases. These results have shown which elements have the strongest influence on intermetallic phases occurrence [8].

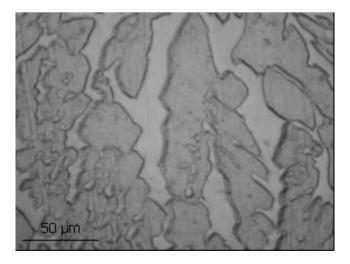


Fig. 5. Typical structure for two – phase brass, dark α phase on β' background, HNO3 etched

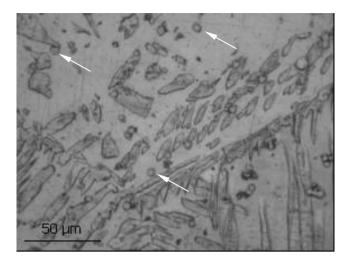


Fig. 6. Structure for three – phase brass, dark α phase on β ' background, small intermetallic phases (arrows), HNO₃ etched

2.3. Mechanical properties

Some standard mechanical test were conducted showing influence of chemical composition and structural components influence on mechanical properties of multi – component brasses. These were tensile test, hardness and impact resistance.

2.4. Technological properties

In scope of technological and operating properties investigation three tests were conducted: castability with use of Navarro – Alcacero technological test, machinability during drilling with constant force [16, 18] and corosivity in solution creating conditions for dezincification. Difference in drilling time for investigated alloys is shown on fig. 7.

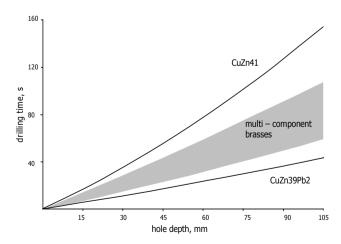


Fig. 7. Drilling time in function of hole depth for different CuZn alloys [16]

3.Conclusions

Conducted studies show that in closed system additions interactions can be described by physical and mathematical model what can be used for optimization of alloy properties and their chemical composition engineering. Validation of created equations showed good agreement with experimental results.

In this studies physical and mathematical model were also created for dependence of structural components quantity and chemical composition of multi – component brasses.

Observation of TDA curves during solidification enables structure forecasting. This part of studies was also verified experimentally and has shown good agreement.

It must be said that presented approach enables engineering of multi – component brasses with technological properties comparable to leaded brass with only slight increase of costs.

References

- M. Kondracki, J. Gawroński, J. Szajnar, The alloy additions influence on technological properties of fixture brasses, AMME, Gliwice – Zakopane 2003, p. 485-490
- [2] A. Janus, B. Ankudowicz, Possibility of lead elimination from CuZn39Pb2 brass, Solidification of Metal and Alloys, vol. 43, PAN Katowice 2000, p. 291-298 (in polish)
- [3] J. Pacałowski, M. Tałach-Dumańska, A. Spodaryk, Multi component nonleaded brass with good machinability and wear resistance, Solidification of Metal and Alloys, vol. 24, PAN Katowice 1995, p. 89-94 (in polish)
- [4] Kondracki M., Gawroński, J. Szajnar J., Role of the intermetallic phases in technological process of fixture brasses, Elsevier Journal o Materials Processing Technology, vol. 162-163, 2005, p. 332-335
- [5] M. Kondracki, J. Gawroński, J. Szajnar, Forecasting of cast CuZn alloy structure based on TDA method, International Conference on Nonferrous Metal Casting Science – Technology, Wysowa 2005, p. 53-58 (in polish)
- [6] S. Kuyucak, M. Sahoo, A review of the machinability of copper-base alloys, Canadian Metallurgical Quarterly, vol. 35, nr 1, 1996, p. 1-15

- [7] M. Kondracki, J. Gawroński, J. Szajnar, G. Dyrbuś, Technological properties of non – leaded fixture brasses, Archives of Foundry, vol. 9, PAN Katowice 2003, p. 287-292 (in polish)
- [8] M. Kondracki, J. Gawroński, J. Szajnar: Identification of some structural components in cast CuZn alloys, Archives of Foundry, PAN Katowice, vol. 15, 2005, p. 204-209 (in polish)
- [9] M. Kondracki, J. Gawroński, J. Szajnar, Hard inclusions in fixture brasses, AMME, Wisła, 2005 p. 319-322
- [10] M. Kondracki, J. Gawroński, J. Szajnar, Intermetallic phases influence on solidification process of fixture brasses, AMME, Wisła, 2005 p. 323-326
- [11] M. Sadayappan, J.P. Thomson, M. Sahoo, Grain refinement of permanent mold cast copper base alloys, World Foundry Congress, Istambul 2002 p. 1401-1411
- [12] M. Kondracki, J. Szajnar, Improvement of modification process of some copper alloys, Slevarenstvi 9/2004, Brno 2004 p. 364-366
- [13] T. Umeda et al., Development of lead free copper alloy castings, mechanical properties, castability and machinability, World Foundry Congress, Istambul 2002 p. 1431-1342
- [14] L.A. Dobrzański, W. Kasprzak, J.H. Sokolowski, R. Maniara, M. Krupiński, Application of the derivation analysis for assessment of the ACAISi7Cu alloy crystallization process cooled with different cooling rate, AMME, Wisła 2005 p. 147-150
- [15] E. Majchrzak, J. Mendakiewicz, A. Piasecka Belkhayat, Algorithm of mould thermal parameters identification in the system casting – mould – environment, AMME, Wisła 2005 p. 411-414
- [16] M. Kondracki, J. Gawroński, J. Szajnar, Chemical composition influence on machinability of non – leaded brasses, Archives of Foundry, vol.17, PAN Katowice 2006 in print (in polish)
- [17] M. Kondracki, J. Gawroński, J. Szajnar, R. Grzelczak, K. Podsiadło, Investigation on crystallization process of fixture leaded brasses with use of TDA method, Archives of Foundry, vol. 4, PAN Katowice 2002 p. 128-134 (in polish)
- [18] M. Miernik, Metals machinability. Investigation and forecasting methods, Wyd. Pol. Wroc., Wrocław 2000 (in polish)