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Abstract
Purpose: The paper presents the computer aided method of chemical composition designing the metallic 
materials with a required property.
Design/methodology/approach: The purpose has been achieved in two stages. In the first stage a neural 
network model for calculating the Jominy curve on the basis of the chemical composition has been worked out.  
This model made possible to prepare, in the second stage, a representative set of data and to work out the neural 
classifier that would aid the selection of steel grade with the required hardenability.
Findings: Obtained results show that AI tools used are effective and very useful in designing new metallic 
materials.
Research limitations/implications: The presented models may be used in the ranges of mass concentrations of 
alloying elements presented in the paper. The methodology presented in the paper makes it possible to add new 
grades of steel to the models.
Practical implications: The worked out models may be used in computer systems of steel selection and 
designing for the heat-treated machine parts.
Originality/value: The use of the artificial intelligence method, particularly the neural networks as a tool for 
designing the chemical composition of steels with the required properties.
Keywords: Design; Computational material science; Artificial intelligence methods

1. Introduction 
Since many years the investigations in the area of materials 

science have been carrying out to develop new materials, among them 
tool ones with higher working properties and fulfilling economical 
and ecological requirements. The main aim of this activity is the 
development of materials for suitable application having a few of the 
following required features: hardness, heat resistance, high-
temperature creep resistance, wear resistance, corrosion resistance, 
impact strength, elasticity, strength, life, ecological manufacturing 
technology, recycling, low cost and other. Fulfilling this demand is 
extorted by the changes still speeded up in global free-market 
economy where the role of inexpensive series/mass production grows 
up significantly. The evolution of science at the end of the 20th 
century take effect in the development of new research, 

manufacturing and forming method of engineering materials. One can 
observe gradual leaving the empirical way of mastering/learning of 
the reality for the advantage of new, mainly computerised, methods 
using mathematical model of the object of investigations. 

The paper presents the computer aided methods of chemical 
composition designing the metallic materials with a required property. 

2. Designing the chemical composition 
of steel with required hardenability 

The new method is dedicated for the conventional carburising 
and heat-treatable steels. Carbon, silicon, manganese, chromium, 
nickel and molybdenum are the main alloying elements used in 
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the carburising and heat-treatable groups of conventional alloy 
constructional steels considered. The chemical composition 
calculations were assumed to be made basing on the given 
hardenability curve shape, presented as the successive hardness 
values at 15 fixed distances from the Jominy specimen face. 
Initial classification of steels was done to obtain a high 
conformity of the computational results with the experimental 
data. The basis of the classification is the value of the alloy factor 
(AF) describing digitally the fraction of alloying elements in steel 
according to standard ASTM A255. The problem is discussed in 
detail in [1]. Basing on the investigations carried out, it was found 
out that classification of steels into three classes within the 
framework of each group of carburising and heat-treatable steels 
is sufficient to obtain a good conformity of the calculations with 
the experimental data of the chemical composition. 

For designing of the chemical composition of the steel with 
the required hardenability, unidirectional multilayer neural 
networks were employed with the learning method based on the 
error backpropagation algorithm. Fifteen input nodes and 6 output 
ones assumed in the network structure are the consequence of the 
assumption that the hardenability of the steels’ analysed is 
affected mainly by the concentration of six basic alloying 
elements. And additionally, hardenability curve is plotted by the 
values of hardness measured at fifteen successive points in fixed 
distances from Jominy specimen face. Finally, after preliminary 
tests, the 15-30-6 network model was assumed for the 
calculations, with the learning coefficient =0.15 and momentum 
parameter =0.3. Networks with such structures were trained 
individually for each steel class, using a data set prepared basing 
on the results of the experiments carried out. The neural networks 
developed were experimentally verified, which consisted in the 
evaluation of the conformity of the computational results 
(obtained by using the network models) with the experimental 
data. As a criterion of the evaluation a coefficient of assessment 
of the computation method adequacy s was employed. The 
coefficient defines the difference between the required 
hardenability and the one obtained for an actual heat. As a result 
of the investigations performed, the limiting value 2.5 HRC of the 
coefficient s was assumed [2]. 

Verification procedure for such a model consists in 
calculating the chemical composition of the steel with the 
required Jominy curve shape and in making the heat of the steel 
with the chemical composition calculated. Then, the relevant 
hardenability investigation is carried out and the actual 
experimental hardenability curve of the heat is compared to the 
required Jominy curve shape. For experimental verification 
hardenability curves with the assumed and distinctly different 
shapes were selected. Calculations of the chemical composition 
for the curves with the required shape were made within the 
framework of a particular steel grade only when the required 
hardenability curve was within the experimental hardenability 
band for the class considered. Then, investigations of 
hardenability of the heats with the actual chemical compositions 
the nearest to the calculated ones were made. Hardenability 
curves’ shapes, the required and the actual ones, were compared 
afterwards. As an example of the calculations made, the results 
for two of the required shapes of hardenability curves are 
presented (curve I for carburising steel, curve II for heat-treatable 
steel). The chemical compositions calculated within the 

framework of each steel class for which the required hardenability 
curve is within the experimental hardenability band and the 
relevant chemical compositions of the actual heats are included in 
Table 1. Figure 1 presents the graphical comparison of the 
required hardenability curve and the experimental ones for the 
steel heats with the designed chemical composition. Basing on 
such calculations made for about 550 testing industrial heats it 
was found out that the neural network model developed secures 
the satisfactory adequacy with experimental data since in each 
case the calculated coefficient of adequacy assessment s is smaller 
than its critical value 2.5 HRC. 

Table 1 
Comparison of the calculated and the relevant chemical compositions 
of the actual heats 

Mass concentration, % 

calculated 1 calculated 2 calculated 3Required 
curve

Alloying 
element 

actual 1 actual 2 actual 3 

0.20 0.24 0.22 C
0.18 0.23 0.26 
0.91 0.80 0.59 Mn
0.95 0.78 0.60 
0.29 0.26 0.23 Si
0.28 0.29 0.20 
0.93 0.59 1.01 Cr
0.95 0.53 1.06 
0.12 0.53 0.18 Ni
0.12 0.45 0.16 
0.25 0.32 0.22 

I

Mo
0.23 0.32 0.21 
0.41 0.40 0.42 C
0.41 0.40 0.41 
0.60 0.77 0.79 Mn
0.68 0.72 0.69 
0.25 0.29 0.26 Si
0.28 0.31 0.36 
0.75 1.01 1.02 Cr
0.74 1.03 1.06 
1.29 1.29 0.23 Ni
1.35 1.35 0.26 
0.16 0.18 0.07 

II

Mo
0.16 0.17 0.07 

3. Designing the chemical composition of 
steel with the assumed hardness after 
cooling from the austenitising temperature 

The method presented in the paper makes it possible to 
determine the mass concentrations of the alloying elements for 
steels with the required curve of hardness changes versus cooling 
rate obtained during the continuous cooling from the austenitising 
temperature. 

3.	�Designing the chemical 
composition of steel with 
the assumed hardness 
after cooling from the 
austenitising temperature
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Fig. 1. Comparison of the required hardenability curves and the experimental ones of the steels’ with designed chemical composition 

Designing the optimum chemical composition is carried out in 
three stages: 

preparing the database containing information on mass 
concentrations of the elements, 
calculating the austenitising temperature (temperature 
Ac3+50°C) using the neural network model described in [3], 
calculating hardness of steel cooled continuously from the 
austenitising temperature for various cooling rates using the 
model developed employing the neural networks, 
selecting the chemical composition of steel meeting the 
assumed criterion. 
The data set was developed basing on literature data, 

including chemical compo-sitions, austenitising temperature (TA) 
and the CCT diagrams of the constructional and engineering 
steels. The obtained curves were worked out, assuming mass 
fractions of the alloying elements as the criterion. Basing on the 
collected data it was assumed in addition that total of the mass 
fractions of manganese, chromium, nickel, and molybdenum does 
not exceed 5%. The ranges of the assumed mass fractions of 
elements and austenitising temperature are included in Table 2.   

To develop the relationship between the chemical composition, 
austenitising temperature, and cooling rate, and hardness of the 
constructional steel the feedforward neural network (MLP) was 
used. The data was divided into four sets: training, validating, test, 
and verifying one. The training set was used for development of the 
neural network model, the validating set was used for checking the 
model during establishing the values of weights, and the verifying 
set was used for verifying the model when the network training was 
completed. Allocation of data to the particular subsets was done 
randomly. The number of vectors was determined in the particular 
sets: 1582, 791, 790, and 369. The activation level of the successive 
fourteen network input nodes depended on: mass concentration of 
elements (C, Mn, Si, Cr, Ni, Mo, V, Cu), austenitising temperature, 
cooling rate, and structure type. The type of structure developed 
after cooling the steel at a particular rate was specified using four 
binary nominal variables. 

Hardness was determined basing on the activation level of 
a single neuron in the network output layer. The number of hidden 
layers and number of nodes in these layers, and also method and 

training parameters were specified analyzing the effect of these 
quantities on the network performance coefficient values for the 
test set. The number of training epochs was determined by 
observing the network forecast error for the training and 
validating sets. The model developed was subjected to the 
numerical verification using the data that were not used in its 
development. The network with two hidden layers and numbers of 
neurons in these layers as twenty and two was assumed to be 
optimal. Table 3 presents error values and correlation coefficients 
for calculated hardness. Training method was used based on the 
conjugate gradient algorithm. The detailed problem description 
was presented in [4,5]. 

To prepare the database containing the information about the 
randomly selected chemical compositions of steel, taking into 
account limitations presented in Table 2, the computer program 
was developed generating random chemical compositions of steel 
basing on user specified parameters: 

range of mass concentrations for each element, 
number of cases, 
maximum sum of the selected elements’ concentrations, 
additional parameter (cooling time from the austenitising 
temperature to the ambient temperature). 
Austenitising temperature was determined as the Ac3+50°C 

temperature for the prepared set of 6500 various chemical 
compositions of steel and next hardness was calculated for ten 
assumed average cooling rates. Three numerical procedures were 
developed making it possible selection of the optimum chemical 
composition in respect to one of the three search criteria: 

required hardness for the assumed cooling rate, 
required hardness in the assumed range of cooling rate changes, 
required curve of hardness change in the entire range of 
cooling rate changes. 
In the first method, the chemical composition of steel is 

searched, for which the module value of difference between the 
calculated and expected hardness (for the assumed cooling rate) is 
the smallest. In the second method, the chemical compositions of 
steels are searched, for which hardness is within the range defined 
by specifying the minimum and maximum values at the assumed 
cooling rate range. 
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Table 2. 
Ranges of mass concentrations of elements and austenitising temperature for the analysed steels 

Mass concentrations of elements, % Range
C Mn Si Cr Ni Mo V Cu 

Austenitising 
temperature TA, C

min 0.08 0.13 0.12 0 0 0 0 0 770 
max 0.77 2.04 1.90 2.08 3.65 1.24 0.36 0.3 1070 

Table 3. 
Error values and correlation coefficients for hardness calculated for data from the training/validating/testing /verifying data sets 

Data set Error EHV, HV Standard deviation of the 
error, HV 

Quotient of standard 
deviations

Pearson correlation 
coefficient 

Training 28.7 27.2 0.24 0.97 
Validating 34.8 35.1 0.29 0.96 
Testing 36.1 37.3 0.31 0.95 
Verifying 38.4 38.5 0.32 0.95 

Table 4. 
Chemical composition of steel calculated for the assumed versus cooling time from the austenitising temperature 

Cooling time, s 3 20 50 100 250 500 1000 5000 2 103 105

Predetermined hardness, HV 550 540 480 420 360 320 290 230 210 200 
Calculated hardness, HV 560 552 473 417 353 312 277 240 215 207 
Error, HV 9.8 12.0 7.4 2.9 7.2 8.2 12.6 10.2 5.1 7.1 
Ferrit No Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Pearlit No No No No No No No Yes Yes Yes 
Bainit Yes Yes Yes Yes Yes Yes Yes No No No 
Martensit Yes Yes Yes Yes Yes Yes Yes No No No 

Predicted mass concentration of alloying elements, % 
C Mn Si Cr Ni Mo V Cu TA

0.2 0.63 0.43 0.53 0.21 0.24 0.29 0.03 912 

In the third method, calls for specifying the expected hardness 
for the successive ten values of cooling time from the austenitising 
temperature to 100°C. 

The chemical composition of steel is searched, for which the 
sum of the absolute differences between the calculated and expected 
hardness, for the successive cooling time values, is the smallest.  

Figure 2 present comparison of the required curve of hardness 
changes versus cooling time with the curve calculated for the 
assumptions presented in Table 4. 
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Fig. 2. Comparison of the assumed and calculated curves 

4. Final remarks 
The paper presents some examples of application of artificial 

intelligence tools, i.e. neural networks and genetic algorithms in 
designing of new materials with required properties. Results of 
numerical simulation show that AI tools used are effective and 
very useful in designing new metallic materials. 
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