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Abstract
Purpose: It is the intention of the present study to examine the effect of geometric nonlinearity on displacements 
and stresses in beams made of functionally graded materials (FGMs) subjected to thermo-mechanical loadings.
Design/methodology/approach: The nonlinear strain-displacement relations are used to study the effect of 
geometric nonlinearity. Temperature distribution through the thickness of the beams in thermal loadings is 
obtained by solving the one-dimensional heat transfer equation. Then the equilibrium equations are obtained 
within the framework of the first-order shear deformatyion beam theory (FSDBT) and then solved exactly and 
also by using a perturbation technique. The results obtained from these two methods are compared for various 
loadings and boundary conditions.
Findings: The numerical results showed that the nonlinearity effect on the displacements and stresses of the 
beams is significant. Also the effects of material constant n and the boundary conditions on the nonlinear 
bending behavior of the beams are determined.
Research limitations/implications: The exact solution method of nonlinear equilibrium equations can only be 
developed for composite beams with the same boundary conditions at the ends.
Practical implications: It is showed that for the maximum deflections greater than 0.3h a nonlinear solution 
is required.
Originality/value: The paper introduces a new method to obtain analytical solution for nonlinear equilibrium 
equations. This method can be used in developing higher-order shear deformation and layerwise theories.
Keywords: Applied mechanics; Functionally graded beams; Nonlinear analysis; Analytical solution

1. Introduction 

The fast progress of modern high technology requires more 
and more new materials with various special properties or 
functions [1,2]. Under some severe environment such as super-
high temperature, conventional materials may not service. A new 
material concept functionally graded materials (FGMs) has been 
proposed to meet the need [3] which usually comprises different 
material constituents such as ceramics and metal. FGMs have 
received considerable attention in many engineering applications 
since they were first reported in 1980s. FGMs are composite 
materials, microscopically inhomogeneous, in which the 

mechanical properties vary smoothly and continuously from one 
surface to the other. Compared with classical laminated composite 
materials, FGMs provide superior thermo-mechanical 
performances under given loading circumstances [4]. FGMs can 
be used to improve creep behavior [5], fracture toughness of 
machine tools [6], wear resistance, oxidation resistance of high 
temperature aerospace and automotive components and so on. 

There are many studies concerning numerical solutions of 
thermo-mechanical responses of functionally graded (FG) beams 
and plates that account for moderately large rotations in the von- 
Kármán sense (see, e.g., [7-11]). But no research has been 
devoted so far for developing exact solution of nonlinear 
equilibrium equations of (FG) beams. To this end, a first-order 
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shear deformation beam theory (FSDBT) is used to analyze 
displacements and stresses in beams made of functionally graded 
materials. The nonlinear strain-displacement relations are used to 
study the effect of geometric nonlinearity on displacements and 
stresses of the beams. The equilibrium equations are solved 
exactly and also by using a perturbation technique. The results 
obtained from these two methods are compared for various 
loading and boundary conditions. Finally, effects of considering 
geometric nonlinearity on deflections and stresses are determined.

2. Mathematical formulations 

Consider a FG beam with length L, total thickness h, and 
width b. The bottom surface of the beam ( / 2z h ) is subjected 
to a normal transverse load. It is assumed that a generic material 
property at a point z in FGMs is approximated by a power-law 
distribution in terms of the volume fractions of the constituents 
[8]. In the present study, the beam may be also subjected to a 
thermal loading. The variation of temperature is assumed to occur 
in the thickness direction only. The thermal analysis is carried out 
by first solving a simple steady state heat transfer equation 
through the thickness of the beam where the thermal boundary 
conditions are T=Tc at z=h/2 and T=Tm at z=-h/2.

Here a first-order shear deformation plate theory is used to 
derive first-order shear deformation beam theory. The 
displacement field is assumed as: 

0( , , ) ( , ) ( , )xu x y z u x y z x y

0( , , ) ( , ) ( , )xv x y z v x y z x y , ( , , ) ( , )w x y z w x y
(1)

where u0, v0, and w denote the displacements of a point on the 
middle plane of the plate. Also x  and y  are unknown 

functions which denote rotations of a cross-section about y and x
axes, respectively. In the present study we wish to investigate the 
effect of geometric nonlinearity on the response quantities. 
Therefore, the von Kármán-type of geometric nonlinearity is 
taken into consideration in the strain-displacement relations. 
Substituting Equations (1) into the appropriate strain-
displacement relations results in: 

0 0,    ,    0x x x y y y zz z
0 0 0, ,yz yz xz xz xy xy xyz

(2)

where

0 2
0, ,( ) 2x x xu w , ,x x x

0 2
0, ,( ) 2y y yv w , ,y y y

0 0
, ,,    yz y y xz x xw w

0
0, 0, , ,xy y x x yu v w w , , ,xy x y y x

(3)

Using the principle of minimum total potential energy, the 
equilibrium equations can be shown to be: 

, , 0x x xy yN N , , , 0xy x y yN N

, , 0x x xy y xM M Q , , , 0xy x y y yM M Q

, , ( ) ( , ) 0x x y yQ Q w q x y
(4)

where

, , , ,, ,
N( ) x x xy y xy x y yx y

w N w N w N w N w (5)

and ( , )q x y  is the transverse load that is applied on the bottom 
surface of the plate. Also the force and moment resultants are 
defined as: 

2

2
, , ( , , )

h

x y xy x y xyh
N N N dz

2

2
, , ( , , )

h

x y xy x y xyh
M M M zdz

2

2
, ( , )

h

x y xz yzh
Q Q dz

(6)

The linear constitutive relations are given by: 

11 12

12 22

( ) ( )

( ) ( )
x x y

x x y

Q T Q T
Q T Q T

44 55 66,   ,   yz yz xz xz xy xyQ Q Q
(7)

Upon substitution of Equations (7) into Equations (6), the 
force and moment resultants will be obtained which can be 
presented as follows: 

0 0
11 12 11 12

0 0
12 22 12 22

T
x x y x y x

T
y x y x y y

N A A B B N

N A A B B N
0 0

11 12 11 12

0 0
12 22 12 22

T
x x y x y x

T
y x y x y y

M B B D D M

M B B D D M

(8a)

0
66 66xy xy xyN A B , 0

66 66xy xy xyM B D (8b)
2 0 2 0

44 55,    y yz x xzQ k A Q k A (8c)

where
2 2

2
( , , ) (1, , )

h

ij ij ij ijh
A B D Q z z dz

2

11 122
( , ) ( ) (1, )

hT T
x x h

N M Q Q T z dz

2

12 222
( , ) ( ) (1, )

hT T
y y h

N M Q Q T z dz

(9)

and k2(=5/6)  is the shear correction factor. Next, in order to 
derive the beam theory it is assumed that Ny=My=0. By imposing 
this assumptions in Equations (8a) results in: 

0
11 11

11 11

T
x x x

T
x x x

N A B N
M B D k M

(10)
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where

11 1111 11

11 1111 11

1
12 12 22 22 12 12

12 12 22 22 12 12

A BA B
B DB D

A B A B A B
B D B D B D

1
12 12 22 22

12 12 22 22

TT T
yx x
TT T
yx x

NA B A BN N
MB D B DM M

(11)

It is also assumed that all the force and moment resultants are 
functions of coordinate x only. Hence, Equations (4) are 
simplified as follows: 

0xdN
dx

, 0xydN
dx

, 0x
x

dM Q
dx

0xy
y

dM
Q

dx
, ( ) 0x

x
dQ d dwN q x
dx dx dx

(12)

where q(x) is the transverse load that is applied on the bottom 
surface of the beam. 

3. Solution methodologies 
In this section a beam subjected to a uniform transverse loads 

on its bottom surface and/or thermal loads is considered. In what 
follows two solution methodologies, exact  and perturbation, are 
presented.

To obtain the exact solutions of Equations (12) the boundary 
conditions of the beam at / 2x L   are assumed to be the same. 
By integrating the first equation of Equations (12) with respect to 
x results in: 

0 0
11 11

T
x x x xN N B k A (13)

where 0

xN  is a constant of integration. With (13), Equations (3) 

and (8), with 0y , are substituted into Equations (12) to 
yield: 

2 0
0 11 11( ) 2 ( )T

x x xu w N N B A (14a)

66 0 66 0yA v B (14b)
2

211 11
11 55

11 11

( ) .
T T

x x
x x

dM dNB B
D k A w

A dx A dx
(14c)

2
66 0 66 44 0y yB v D k A (14d)
2 0

55 ( ) ( )x xk A w N w q x (14e)

where a prime indicates an ordinary derivative with respect to x.
Equations (14) are five linear ordinary differential equations with 
constant coefficients. It is noted that Equations (14b) and (14d) 
are both homogeneous and in terms of v0 and yy only. Since the 
corresponding boundary conditions are all homogeneous and in 
terms of v0 and yy only, the solution of Equations (14b) and (14d) 

is only a trivial one. The remaining equations can be solved 
analytically for any sets of boundary conditions in terms of the 
unknown constant 0

xN . After solving these equations we will use 
one more condition to find the final solutions. This condition is 
obtained by noting that, for example, for the C1-C1 and S1-S1 
boundary types we have u0=0 at 2x L which will allow us to 

find 0
xN  in a trial and error process. Towards this end, we note 

that integrating Equation (14a) from 0 to L/2 results in: 
2

0 0 0

2 0
11 11 11(0)2 2 2

L

x xu u dxL B A w N L A (15)

Clearly, because of symmetry we have u0(0)=0. Therefore, we 
conclude that: 

/ 2 2 0
11 11 110

2 2
L T

x x xN B A w dx N L A (16)

Finally, by making the solutions of the Equations (14a), (14c) and 
(14e) to satisfy (16) in a trial and error process, we will obtain the 
exact value of 0

xN .
Next, the perturbation technique, Lindstedt-Poincaré method, 

is used to solve the three coupled nonlinear ordinary differential 
equations. Now we define 0w  as 0)0( ww . Also the unknown 
variables are represented by the following expansions:  

2 3
0 1 0 2 0 3 0( ) ( ) ( ) ( )u x u x w u x w u x w (17a)

2 3
1 0 2 0 3 0( ) ( ) ( ) ( )x x x xx x w x w x w (17b)

2 3
1 0 2 0 3 0( ) ( ) ( ) ( )w x w x w w x w w x w (17c)

2 3
1 0 2 0 3 0i i i iC C w C w C w , 1,2, ,6i (17d)

where w0 is an unknown parameter which will be found at the end 
of analysis. Next, in mechanical loading ( 0T ) we let: 

2 3
0 1 0 2 0 3 0( )q x q q w q w q w (18)

And in thermal loading (q(x)=0) we consider the temperature of 
the top surface of the beam as T . Finally, in this case, we let: 

2 3
0 1 0 2 0 3 0T T T w T w T w (19)

where 0
0 300T C  and iq ’s and iT ’s are some unknown 

constants which will be found by imposing certain conditions. 
These conditions are found by noting that from 0(0)w w  and 
(17c) we must conclude that: 

1 (0) 1, (0) 0, 2,3,iw w i (20)

Substituting Equations (17) and (18) (or (19)) into equilibrium 
equations results in an infinite sets of coupled ordinary linear 
differential equations whose solutions can readily be obtained. 
Then constants iq ’s (or iT ’s) are found by imposing the 
conditions in (20). Finally w0 is found by numerically solving the 
polynomial equation in (18) (or (19)). 
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4. Results and discussion
Here we present results for a representative clamped-clamped 

beam (C1-C1) which its bottom surface is rich of Aluminum and 
the top surface is rich of Zirconia. For brevity, it is assumed that 
the beam is subjected to a uniform transverse load only and 
L/h=15 in all numerical examples. The mechanical properties of 
the constituents are Em=70GPa, 0.3m , Ec=151GPa,

0.3c where m and c indicate metal (i.e., Aluminum) and 
ceramic (i.e., Zirconia), respectively. In the numerical results the 
various non-dimensionalized parameters used are: length, 
x x L , deflection, w w h , longitudinal stress, 

Lqhxx 0/ , load parameter, 44
0 / hELqq m

 where 0q
denotes the intensity of the applied uniform transverse load. For 
brevity all the numerical examples presented in what follows are 
for a FG beam with the power-law index n=3 subjected to the 
load parameter 36.16q . Figure 1 presents the variation of the 

center deflection of the beam versus the load parameter q .  It is 
seen that for the maximum deflections greater than 0.3h a 
nonlinear solution is required.
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Fig. 1. Variation of center deflection of the FG beam versus the
load parameter q

Also variation of x  along the bottom surface of the beam is 
shown in Figure 2. It is observed from Figure 2 that there is 
excellent agreement between the results obtained form the exact 
method and those obtained from the perturbation technique. It is 
also seen that both the maximum deflection and normal stress in 
nonlinear analysis are smaller in magnitude in compared with 
linear analysis. 
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Fig. 2. Variation of x  along the bottom surface of the FG beam

5. Conclusions 
In this study a first-order shear deformation beam theory is 

used to analyze displacements and stresses in functionally graded 
beams subjected to transverse loads on its bottom surfaces and/or 
thermal loads. The nonlinear strain-displacement relations are 
used to study the effect of the geometric nonlinearity. The 
material properties are assumed to vary according to a power-law 
distribution in terms of the volume fractions of the constituents. 
Temperature distributions through the thickness of the beams in 
thermal loading are obtained by solving the one-dimensional heat 
transfer equation. Next, the equilibrium equations are solved 
exactly and then by using a perturbation technique to verify the 
exact results. The exact solution method can be used for beams 
with the same boundary conditions, but the perturbation technique 
can be used for beams for the arbitrary boundary conditions. The 
numerical results obtained in the present study show that the 
nonlinearity effect on the displacements and stresses of the beams 
is significant. Also the effects of material constant n and the 
boundary conditions on the nonlinear bending behavior of the 
beams are determined. 
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