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Abstract

Purpose: A spectral element model is developed for accurate prediction of the dynamic characteristics of an 
axially-traveling strip subjected to a sudden thermal loading.
Design/methodology/approach: The spectral element model is formulated from the frequency-dependent 
dynamic shape functions which satisfy the governing equations in the frequency-domain and its extremely high 
accuracy is evaluated by comparing with the conventional finite element model in which simple polynomials 
are used as the shape functions. Also some numerical studies are conducted to investigate the vibration 
characteristics of an example axially-traveling strip subjected to a sudden thermal loading on its upper surface.
Findings: The present spectral element model is shown to provide very accurate dynamic characteristics by 
treating a whole uniform strip between two boundary supports as a single finite element, regardless of its length, 
when compared with the conventional finite element model.
Practical implications: Numerical studies for the typical example problem show that the dynamic characteristics 
of an axially-traveling strip may depend on the traveling speed and the duration and frequency characteristics 
of the externally applied thermal loading.
Originality/value: The spectral element model presented in this paper is the first one for the axially-traveling 
strips subjected to thermal loadings and is applicable to the engineering problems such as the galvanized steel 
strip passing through a hot zinc tank, for instance.
Keywords: Applied mechanics; Spectral element model; Axially-traveling strip; Vibration; Thermal loading

1. Introduction 
When a thin-walled structure is subjected to a sudden thermal 

loading, a very rapid thermal process may occur to induce very 
rapid movements in the structure, thus causing the structure to 
vibrate. The thermally induced vibration of a beam subjected to a 
suddenly applied heat flux distributed along its span was studied 
first by Boley [1]. Since then, numerous studies have been 
conducted for various thermoelastic structures [2]. The existing 
previous studies on the thermally induced vibration have been 
focused mostly on the stationary (i.e., not axially-traveling) 
structures. To the authors’ best knowledge, the dynamics of 
axially-traveling thermoelastic structures such as the galvanized 
steel strips passing through the hot zinc tank has not been 

investigated yet. Furthermore the spectral element method (SEM) 
has not been applied to such axially-traveling thin structures. 

The SEM is one of element methods such as the finite element 
method (FEM). The key differences from FEM are as follows. In 
SEM, (1) the spectral element matrix (exact dynamic stiffness 
matrix), which is formulated in the frequency-domain by using 
the frequency-dependent dynamic shape functions, is used, and 
(2) the FFT algorithm is used to efficiently reconstruct the time-
domain responses from the frequency-domain solutions. Because 
no approximation or assumption is made in the course of spectral 
element formulation, the SEM indeed provides exact solutions 
and thus it is well recognized as an exact solution method [3]. 

Thus, the purposes of this paper are: (1) to develop a spectral 
element model for axially-traveling thin strips which are subjected 
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to thermal loadings and (2) to investigate the dynamic of an 
example axially-traveling thin strip. 

2. Dynamic equations of motion
Consider a thin strip is traveling in the axial x (axial) direction 

at a moving speed of c. The strip has the thickness h and width b,
and its material properties are given by the Young’s modulus E
and Poisson’s ratio . Assume that the strip has a small amplitude 
vibration and its displacements don’t vary along the width (y)
direction. Accordingly define w(x, t) and u(x, t) as the transverse 
displacement and axial displacement, respectively, of a thin strip 
which is axially-traveling over two simply supports of distance L.

Based on the Kirchhoff’s hypothesis, the equations of motion 
and relevant boundary conditions for the small amplitude 
vibration of a thin strip can be derived from the Hamilton’s 
principle as 
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where px(x, t) and pz(x, t) denote the external loads in the x and z
directions, MT and NT are the thermally induced moment and axial 
force, respectively, and the following definitions are used: 
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Assume that the thermal load is applied only on the top or 
bottom surface of the strip. Because of the geometry of the thin 
strip, the temperature variation due to a sudden heating on a 
surface of the strip will be more significant in the thickness 
direction rather than in the in-plane directions. Accordingly, the 
heat conduction equation can be derived into the form as 
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where E  = (1+ )E/(1-2 )(1- ).

3. Spectral element model 
By using the DFT (discrete Fourier transforms) theory [5], 

one can express 
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where Un, Wn, Pxn, Pzn, NTn and MTn (n = 0, 1,…, N-1) are the 
spectral components of u, w, px, py, NT and MT, respectively, and 
N is the number of samples. Substituting Eq. (4) into Eq. (1) gives  
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To formulate the spectral element, the general solutions of the 
homogeneous equations of (13) are assumed as 

x
nn

x
nn

nn eBxWeAxU ,   (6) 

where n and n denote the wavenumbers for the axial and 
transverse wave modes, respectively. Substituting Eq. (6) into the 
homogeneous equations of (5) will provide two dispersion 
relations, from which two wavenumbers knr (r =1, 2) for the axial 
wave mode and four wavenumbers nr (r =1, 2, 3, 4) for the 
transverse wave mode can be computed. By using these six 
wavenumbers, the general solutions of the homogeneous 
governing equations of Eq. (5) can be obtained in term of spectral 
nodal DOFs vector {dn} as 
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In Eq. (7), [NUn] and [NWn] are the frequency-dependent 
dynamic shape function matrices. 

By using the variational approach [5], the spectral element 
equation can be formulated from Eq. (7) as  

nnn fdS  (9) 

where  
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2.	�Dynamic equations of motion

3.	�Spectral element model
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Spectral elements can be assembled in a completely 
analogous way to that used in conventional FEM. Assembling 
all spectral elements and then applying appropriate boundary 
conditions yield a global system equation. The natural 
frequencies can be then computed from the condition that the 
determinant of the global spectral stiffness matrix vanishes at 
natural frequencies.  

The temperature field is governed by Eq. (3) and thermal 
boundary conditions specified on the upper and lower surfaces 
of strip. As done for the displacements field, the temperature 
field can be also represented in the spectral form and its 
spectral components can be obtained as 
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The constants Bn1 and Bn2 are determined by the thermal boundary 
conditions on the upper and lower surfaces of strip.  

4. Numerical example and discussions  
A thin strip, which is axially-traveling over two simple supports 

of distance L = 2 m, is considered as an example problem. The strip 
(Fig. 1) has the thickness h = 5mm, width b = 0.5 m, Young’s 
modulus E = 73 GPa, Poisson’s ratio = 0.33, mass density =
2770 kg/m3, thermal expansion coefficient =23.0 10–6/K, thermal 
conductivity k = 177 W/mK, and the specific heat cp = 875 J/kg K. 
In Fig. 1, T0 is the room temperature.  

Table 1 shows that the natural frequencies obtained by SEM 
are identical to the exact results when c = 0 m/s, and the FEM 
results certainly converge to the SEM results when c  0 m/s as 
the number of finite elements used in FEM is increased. This 
proves the extremely high accuracy of the present spectral 
element model.  

To investigate the thermally induced vibrations of the strip, 
the temperature on the middle part of its upper surface is 
suddenly heated by T = 20K. It is assumed that the strip is 
traveling at c = 4 m/s. Figure 2 shows the time history of the 
transverse vibration depending on the size of heating zone, L2. It 
is found that the amplitudes of both axial and transverse 
vibrations become larger as L2 is increased. 

To investigate the effect of the duration of heating on the 
thermally induced vibration, the heating is applied on L2 = 0.2L
for three different durations. As illustrated in Fig. 3 for the case 
of transverse vibration, in general the amplitudes of both axial 
and transverse vibrations become larger as the duration of 
heating is increased. 

L1 L2 L1

T0 T0+ T(t) T0

T0

L

Fig. 1 An example problem 

Table 1  
Natural frequencies (rad/s) of a thin strip 
C

(m/s) Method N 1 3 5 15

Exact[6] 19.37 174.31 484.22 4271.2
SEM 1 19.37 174.31 484.16 4271.2

10 19.37 174.41 486.14 4275.6
20 19.37 174.32 484.35 4272.3
50 19.37 174.31 484.23 4271.4

0
FEM 

100 19.37 174.31 484.23 4271.3
SEM 1 14.12 171.39 481.60 4271.2

10 14.12 171.51 483.69 4275.6
20 14.12 171.41 481.80 4272.3
50 14.12 171.40 481.67 4271.4

8 FEM 

100 14.12 171.40 481.66 4271.3
Note: N = used number of finite elements 

4.	�Numerical example and 
discussions



Short paper264 READING DIRECT: www.journalamme.org

Journal of Achievements in Materials and Manufacturing Engineering Volume 17 Issue 1-2 July-August 2006

0 0.1 0.2 0.3 0.4 0.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (sec)

Tr
an

ve
rs

e 
di

sp
la

ce
m

en
t a

t x
 =

 L
/2

   
(m

m
) L2 = 0.1 L

L2 = 0.2 L
L2 = 0.4 L

Fig. 2. Transverse vibration vs. the size of heating zone L2
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Fig. 3. Transverse vibration vs. the duration of heating t

Figure 4 compares the axial and transverse vibrations induced 
by the harmonic thermal loading defined by T(x,t) = 10 
sin(2 ft)+20 (K) when L2 = 0.2L. Figure 5 shows that the 
resonance in transverse vibration mode occurs when the exaction 
frequency f is getting closer to the first transverse natural 
frequency (see Table 1). 

5. Conclusions 
This paper presents a spectral element model for the 

axially-traveling strip which is subjected to sudden heating on 
its surface. The governing equations are derived by using 
Hamilton’s principle and the spectral element model is 
formulated from the frequency-dependent shape functions 
which are the exact frequency-domain solutions of the 
governing equations. The present spectral element model is 
then evaluated by comparing with conventional finite element 
solutions and some numerical studies have been conducted to 
investigate the thermal-induced vibrations of an example 
axially-traveling strip. 
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Fig. 4. Axial and transverse vibrations vs. T(x,t) = 10 sin(2 ft) 
+20 (K) when L2 = 0.2L. 
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