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Abstract

Purpose: An FFT-based dynamic analysis method is proposed for damped linear discrete dynamic systems 
subjected to arbitrary nonzero initial conditions.
Design/methodology/approach: The DFT theory is used to develop an FFT-based spectral analysis method. 
The total dynamic response is considered as the sum of the forced vibration response part and the free vibration 
response part. The forced vibration response part is obtained from the dynamic stiffness matrix and the Fourier 
components of excitation force based on the concept of Duhamel’s integral, and the free vibration response part 
is obtained by determining its integral constant to satisfy arbitrary initial conditions in the frequency-domain.
Findings: Through some numeral examples, the proposed FFT-based dynamic analysis method is shown to 
provide very successful solutions which satisfy all arbitrary non-zero initial conditions.
Research limitations/implications: (not applicable).
Practical implications: (not applicable).
Originality/value: The present FFT-based method is unique because it does not use the superposition of 
corrective free vibration solution or the pseudo-force concept used by other researchers to take into account the 
non-zero initial conditions.
Keywords: Numerical techniques; Spectral analysis method; Linear discrete system; FFT

1. Introduction 
Due to the impressive progress in computer technologies 

during the last decades, there have been developed diverse 
computer-based numerical methods to obtain satisfactory 
solutions of differential equations. In the FFT-based spectral 
analysis method (SAM), the dependent variables of a set of 
ordinary differential equations are all transformed into the 
frequency-domain by using the discrete Fourier transforms (DFT) 
to transform the ordinary differential equations into a set of 
algebraic equations with frequency as the parameter. The 
algebraic equations are then solved for the Fourier (or spectral) 
components of dependent variables at each discrete frequency. As 
the final step, the time-domain responses are reconstructed from 
the Fourier components by using the inverse discrete Fourier 
transforms (IDFT). In practice, the FFT is used to carry out the 

DFT or IDFT. As the FFT is a remarkably efficient computer 
algorithm, it can offer an enormous reduction in computer time 
and also can increase solution accuracy [1]. 

The FFT-based SAM has been well applied to the prediction 
of the steady-state responses of dynamic systems [2, 3]. However 
the application of the FFT-based SAM to the transient responses 
has been limited to the dynamic systems with null initial 
conditions. As an effort to deal with dynamic systems with 
nonzero initial conditions, Veletsos and Ventura [4] introduced 
a DFT-based approach to calculate the transient responses of 
a linear 1-DOF system. Their procedure involves the 
superposition of a corrective free vibration solution which 
effectively transforms the steady-state response to the desired 
transient response. Later Mansur et al. [4] used the pseudo-force 
concept to take into account non-zero initial conditions in the 
DFT-based frequency-domain analysis of an FEM model. 

1.	�Introduction
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The purpose of this paper is to present an FFT-based SAM for 
damped linear discrete dynamic systems subjected to arbitrary 
nonzero initial conditions. The present FFT-based SAM is unique 
because it does not use the superposition of corrective, free 
vibration solution to match the initial conditions as in references 
[4], or the pseudo-force concept to take into account the non-zero 
initial conditions [5].  

2. Dynamic response 
The vibration of a damped m-DOFs dynamic system can be 

represented by  

ttt fKuuCuM  (1) 

with initial conditions 

00 uu  and 00 uu  (2) 

Mathematically the dynamic response of a system can be 
expressed as the sum of the forced vibration response part purely 
determined by the excitation force and the free vibration response 
part purely determined by non-zero initial conditions:  

ttt hf uuu  (3) 

where u(t) is the total dynamic response, up(t) the forced vibration 
response part satifying null initial conditions, and uh(t) is the free 
vibration response part to be determined to satisfy arbitrary 
nonzero initial conditions. 

3. Forced vibration response part 
Duhamel integral provides the forced vibration response of 

a system subjected to null initial conditions [1, 2]. The Fourier 
transforms of the Duhamel integral simply says that the Fourier 
transforms of the forced vibration response is the simple product 
of the Fourier transforms of the unit impulse response function 
(i.e., frequency response function) and the Fourier transforms of 
excitation force. Assume that the force vector f(t) and the forced 
vibration  response part uf(t) can be represented in the spectral 
forms as 
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where r = 1, 2, …, N-1. Applying Eq. (4) into Eq. (1) gives 

nnn FDP 1 ,   *
nnN PP ,   (n = 1, 2, …, N/2) (5) 

where D( ) is the dynamic stiffness matrix defined by 

MCKD 2i  (6) 

Notice that the symbol ( * ) used throughout this paper denotes 
the complex conjuate of a complex quantity. Once the Fourier 
components Pn are computed from Eq. (5), the forced vibration 
response part can be computed by using the IFFT as follows: 

nf IFFTt Pu  (7) 

4. Free vibration response part 
The free vibration response uh(t) satisfies the homogeneous 

matrix equation of motion, which can be reduced from Eq. (1) as 

0hhh tt KuuCuM  (8) 

4.1. Proportional damping 

If C is the proportional damping matrix, Eq. (8) can be 
decoupled by using the modal matrix into the form as 

02 2
hkkhkkkhk xxx ,   (k = 1, 2,  , m) (9) 

where 1k and k are the kth natural frequency and modal 
damping ratio, respectively. Equation (9) can be solved for  
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where k1 and k2 are the roots of the characteritic equation for Eq. 
(9) and ak are constants tot be determined by initial conditions. 
Accordingly the solution of Eq. (8) can be expressed as 

1

0

1)(
N

n

ti
nrh

rne
N

t Hu    (r = 0, 1, 2, , N-1) (11) 

where  

*aYaXH nnn , T
maaa 21a

knknnknknkn diagYdiagXdiag ,, YX

kn

kn

kn

kn

e
eY

e
eX

N

kn

N

kn
1

1,
1

1  (12) 

)(,)( 11 nkknnkkn ii

Substitute the total dynamic response Eq. (3) determined by 
Eqs. (7) and (11)  into the initial conditions Eq. (2) and apply Eq. 
(12) to solve for a  as 

vdRa 12
i  (13) 

where 

kRdiagNN RuMvuMd ,, 0
T

0
T  (14) 
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Once a is computed from Eq. (19), Hn are computed first from 
Eq. (12) and then use the IFFT to compute   

nh IFFTt Hu )(  (15) 

4.2. Non-proportional damping 

If C is the non-proportional damping matrix, Eq. (8) cannot be 
decoupled by using the modal decomposition analysis. Thus 
assume the solution of Eq. (8) as  

t
h et Au  or t

khk eatu ,   (k = 1, 2, …, m) (16) 

Substituting Eq. (16) into Eq. (8) yield an eigenvalue 
problem. For the existence of non-trivial solution of the 
eigenvalue problem, one can derive a 2m-degree algebraic 
equation for eigenvalue . The eigenvlues will appear in the 
complex conjugate pairs for underdamped systems [6], because 
all coefficients of the algebraic equation are real. Thus, the 
eigenvalues can be written as 

jjjjjj ii *, ,   ( j = 1, 2, … , m) (17) 

where j represents the natural frequency and j the rate of 
exponential decay of the jth vibration mode. The ratio between 
the components ak of the jth eigenvector are given by [6] 
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where Cjk is the co-factor of the jth row of the determinant of the 
eigenvalue problem for a particular j, and zj is an arbitrary 
complex number. From Eq. (16), the kth component of the jth
vibration mode corresponding to j is given by 
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By using the DFT theory, the spectral forms of tuhk  can be 
written as 
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Substitute the dynamic response Eq. (3) determined by Eqs. 
(8) and (20) into the initial conditions Eq. (2) and apply Eq. (21) 
to obtain 

vBYBXdBYBX ~~,*  (22) 

where 
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The constants vectors B can be solved from Eq. (22) as 

dYYvXYYXB 111 ~~~  (24) 

Once the constants vector B is computed from Eq. (24), the 
Fourier components Hn are computed first from Eq. (21). Then 
one can compute the free vibration response part uh(t) by using 
the IFFT algorithm as follows: 

nh IFFTt Hu  (25) 

5. Numerical examples and discussion 
To evaluate the present (FFT-based) SAM, two damped three-

DOFs dynamic systems are considered as the example problems. 
The first one is the case with the proportional damping as 
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The second one is the case with the non-proportional damping. 
The initial conditions for both example cases are given by 

)smm(0,1,0,,),mm(0,0,1,, 321321 uuuuuu  (27) 

Figure 1 compares the dynamic responses obtained by three 
different solution methods for the case of proportional damping. 
The dynamic responses exactly obtained by the modal analysis 
method are used as the reference solutions to evaluate the 
present SAM. The DFT period T = 4.8 seconds and the number 

5.	�Numerical examples and 
discussion

4.2.	�Non-proportional damping
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of samples N = 211 are used for the present SAM, whereas the 
time increment t = 0.00234 seconds is used for Runge-Kutta 
method. The present SAM is found to provide accurate solutions 
which are very close to the exact reference solutions and also to 
the numerical solutions obtained by Runge-Kutta method. 
Figure 2 compares the dynamic responses obtained by the 
present SAM and the Runge-Kutta method for the dynamic 
system with non-proportional damping. One may find from 
Figure 2 that the present SAM certainly provides the dynamic 
responses which are very close to those obtained by Runge-
Kutta method. Figure 3 shows the convergence of the dynamic 
response u1(t) as the number of samples N is increased. As 
expected, more accurate result can be obtained by increasing N
for a fixed time window, T = 4.8 seconds. Finally, it is 
worthwhile to confirm from Figure 1 through Figure 3 that the 
present SAM certainly captures all non-zero initial conditions 
exactly in the dynamic responses, which is one of major 
motivations of the present paper. 
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Fig. 1. Dynamic responses with proportional damping 

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

Time (sec)

D
is

pl
ac

em
en

t (
m

m
)

SAM
Runge-Kutta

3u

2u

1u

Fig. 2. Dynamic responses with non-proportional damping 
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Fig. 3. Dynamic responses with non-proportional damping by the 
present SAM vs. the sampling number N

6. Conclusion 
In this paper, an FFT-based SAM is developed to obtain the 

dynamic responses of a damped linear discrete dynamic system, 
subjected to arbitrary nonzero initial conditions. It is numerically 
shown that, by choosing a proper sampling number for a given 
time window, sufficiently accurate solutions can be obtained by 
using the present SAM, when compared with the solutions 
obtained by the modal analysis method and Runge-Kutta method. 
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