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Analysis and modelling

Abstract

Purpose: To determine the most suitable reduction data method and the optimal fitting method for the Garofalo 
equation. Two fitting methods were applied. The input data for this fitting are the sets of forming variables 
{T,σ,ε’} which have been obtained by using four different reduction methods. This procedure is applied to an 
ultrahigh carbon steel (UHCS).
Design/methodology/approach: High temperature torsion tests have been carried out on the UHCS. A wide 
range of forming variables have been used. A numerical method has been implemented for the experimental 
data reduction. The fitting of the Garofalo equation has been carried out by means of two numerical methods. 
An integral method in stages, called RCR method, and a method based on Matlab algorithms called NLD. A 
comparative analysis of the parameters of the Garofalo equation has been conducted.
Findings: The results show that the n and Q parameters are not dependent of the conversion method that has 
been used, Von Mises, Tresca or Eichinger. However, the α and A parameters seem to depend on the reduction 
method. Regarding the fitting, the RCR method is quick and efficient and its results, at the first stage, are close 
to the ones obtained by the NLD method. The evolution of the fitting parameters with strain for each conversion 
and fitting method has been determined.
Research limitations/implications: The evolution of the parameters of the Garofalo equation are influenced 
by the adiabatic heating that occurs during the torsion testing. It is necessary a correct experimental design to 
obtain a suitable grid of data which allows an accurate determination of the strain rate sensitivity and the strain 
hardening coefficient.
Practical implications: The fitting of the Garofalo equation for different strain values can provide information 
on the microscopic processes that take place during deformation.
Originality/value: This work is a comparative study of the usual reduction methods and shows the utility of a 
method for the fitting of the Garofalo equation. This method is convergent, quick and accurate.
Keywords: Numerical techniques; Garofalo equation; Reduction method; Nonlinear fitting
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1. Introduction 
The torsion tests allow the attainment of flow curves of metals 

at large strains, and high strain rates and temperatures. The 
deformation is carried out by means of shear stresses, allowing 
high deformations because no plastic instability is involved.  For 
this reason, these tests are suitable to simulate and optimize many 
of the industrial metal-forming processes. 

The experimental data obtained from torsion tests are the 
torque and the number of turns. They are used for the conversion 
process to obtain the equivalent physical variables, strain, strain 
rate and stress.  

The variables, stress, , as a function of strain rate, , usually 
are fitted by means of the Garofalo equation. This equation is 
given as follows: 

nRT
Q

Ae )sinh(                                                              (1) 

where  is the strain rate, T is the absolute temperature,  is the 
stress, Q is the activation energy for deformation, R is the gas 
constant, and , n and A are material constants.  This equation 
allows extrapolating the results in order to approach the industrial 
conditions. 

Usually, the Garofalo equation is fitted at the maximum of the 
flow curve and at a strain where it is considered that the steady state 
is reached. This allows the study of the variation of the parameters 
of the equation as a function of strain.  

The aim of this work is twofold: a) the study of the usual 
reduction methods and their influence on the parameters of the 
Garofalo equation and b) the fitting of this equation by means of 
two numerical methods. This procedure has been applied to an 
ultra high carbon steel (UHCS) containing 1·3%C. 

2. Material and experimental method

The UHCS studied in this investigation has the following 
composition: 1.3%C, 0.5% Mn, 0.6% Si, 0.18% Cr and balance 
Fe [1]. The manganese was added to neutralize the deleterious 
effects of sulfur and phosphorus. The steel was obtained at 
Sidenor industry as a cast of 8 liters by means of an induction 
furnace. The as-cast ingot was initially soaked at 1050ºC and 
forged into a bar of 60 mm x 55 mm cross section.  

Simulation of the forming process of forged parts was carried 
out by means of torsion tests. An induction furnace heats the test 
sample and the temperature is continuously measured by means of 
a two-color pyrometer. A silica tube with argon atmosphere 
ensures protection against oxidation and minimum adiabatic 
heating. A helium atmosphere is used to obtain, after testing, a 
cooling rate of 325 K/s. 

The torsion samples have an effective gage length of 17 mm 
and a radius of 3 mm. 

Strain rates in the range of 2 to 26 s-1 were used. The 
temperature range is of 900 to 1200ºC. 

The samples were deformed in a SETARAM torsion machine at 
CENIM (Centro Nacional de Investigaciones Metalúrgicas), Madrid. 

3. Conversion of torsion data
The experimental data have to be transformed into equivalent 

physical variables in order to be able to study the constitutive 
differential equations for the plastic flow and specifically the 
Garofalo equation. 

The conversion process can be divided in two main stages: the 
attainment of the true stress from the torque data and the 
attainment of the true strain from the number of turns data. 

For every tested sample at constant temperature, and constant 
rotation speed, N , the input data for the conversion process are 
the torque, ,  and the number of turns, . The reduction process 
act on these experimental data and transform this data into 
equivalent physical variables, i.e. the output data will be the true 
stress, the true strain, and the true strain rate. 

A proper conversion process needs an enough number of tests 
over a wide range of the forming variables to ensure an accurate 
grid over the design domain. 

3.1. Phenomenological function for the fitting 
of { , } data 

The first step to make the reduction process is to fit the { ,
} experimental values. This can be done by using a 

phenomenological function based on the macroscopic behavior of 
a polycrystalline metallic material under plastic flow. The 
expression for this fitting is as follow: 
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The first term, models the elastic part of the deformation and 
the zone that goes from the yield to the maximum of the curve, if 
exist, or to the beginning of the steady state, if not.  

Fig. 1. Torque versus number of turns for the UHCS-1.3%C, at 
110 s and at various temperatures 
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The second term models the steady state regime. The rational 
part take into account the asymptotic trend of the  during creep, 
and the exponential part represent the sharp decrease of the torque 
previous to rupture.  

We can fit all kind of { , } set of values obtaining R2 values 
of about 0.98. 

Fig. 1 shows various fitting curves for the UHCS at various 
temperatures. The strain rate is 10 s-1. The points are the 
experimental data { i, Ni} and the lines represent the fitted 
function. 

The selection of this model takes into account the continuity 
of the deformation process and the derivability conditions over 
the significant zones of the flow curve. This correspond to the  
zone of the stress peak and the possible steady state zone [2]. 

The problem is to find the GFEDCBA ,,,,,,  and 
H parameters in such a way that Eq. (2) fit the { i, i} data as 
good as possible. Therefore, we have a minimization problem and 
its objective function can be defined as: 

S

i
iiHGFEDCBA

N
S 1

2

,,,,,,,

1min           (3) 

where S is the number of obtained measurements for the torsion 
test under consideration. 

3.2. True Stress Values

The Fields – Backofen method [3] has been employed to 
obtain the shear stress values, .  The basic expression is the 
following: 

m
R

Rr 3·
··2

)(
3

          (4) 

where,  is the shear stress at the outer radius,  is the applied 
torque to the cylindrical specimen, R  is the radius of the 
specimen,  is the strain hardening coefficient and m  is the 
strain rate sensitivity. These last two coefficients are defined as 
follow: 

cteNTcteNT N
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ln          (6) 

The yield criteria by von Mises and Tresca are used to 
calculate the true stress values .  The difference between these 
criteria mainly leads to a difference in the absolute heights of the 
flow stress curves whilst their relative shapes and strain rate 
sensitivity are not strongly affected [4]. Both criteria are also 
based on the assumption that the stress is independent of the strain 
rate, which implies a contradiction [4] since torsion test are often 
carried out on strain rate sensitive materials. 

3.3. True Strain and Strain Rate Values

The strain and strain values have been calculated by two 
methods. The following expressions can be obtained according to 
the von Mises method [4]: 

N
L
R ·

·3
··2             (7) 

N
L
R ·

·3
··2             (8) 

where L is the gage length. 
According to Eichinger [5], the von Mises expressions are not 

correct because the strain values are excessively high and have no 
physical meaning.  The Eichinger equations for the strain, * ,
and the strain rate, *  are the following: 
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where 
L

Ra · .

The Eichinger expressions are usually recommended to 
calculate large strains in torsion tests [6]. This conversion process 
involves that at a constant rotation speed N  of the torsion 
machine, the true strain rate decreases with increasing 
strain. This can be seen in Figure 2.

According to the work of Canova [7] to carry out a test at 
constant , the rotation speed should be raised to have a constant 
F factor in Eq. (10). 

3.4. Calculation of  and m parameters 

Calculation of the strain-hardening coefficient 

To obtain the parameter it is necessary to calculate the 

derivate
cteNTN ,

and to evaluate it for every iN  measurement. 

The expression for the derivate was calculated analytically by 
means of Eq. (2). The evaluation of the derivate on every iN  gives 
a  value on every measurement. This procedure to obtain the 
strain-hardening coefficient ensures an accurate determination [2]. 

3.2.	True stress values

3.3.	�True strain and strain rate values

3.4.	�Calculation of θ and m 
parameters
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Fig. 2. Evolution of True Strain Rate with the number of turns as 
Von Mises and Eichinger 

Calculation of the strain rate sensitivity 

To calculate the m parameter it is necessary to use all pairs of 
data { , } from tests carried out at the same temperature and at 
all strain rates [2]. Therefore, it is necessary to build the 

)(N functions at every N value.  However, the construction of 
these functions is based, in general, on few data points and, 
therefore, the calculation of the m parameter may have a large error.  

The algorithm used to calculate the strain rate sensitivity has 
the following steps: 

Use of all the tests carried out at the same temperature. 
Determination of the final N value of each test and the 
minimum among these values, minN . An equal-spaced vector 

from 0 to .minN is build. 

Evaluation of the phenomenological function, Eq. (4), at each 
element of the vector and determination of { N , } data at N 
and T constants. 
Construction of the ( N ) function for each N value, whose 
derivate provides the m coefficient. We usually used 3 to 6 
pairs of data, (as much as tests carried out at different strain 
rates and at the same temperature), to built this function. 
Therefore, its construction is associated to high levels of 
uncertainty. Then, among the different possibilities of 
interpolating these pairs (spline, piecewise cubic hermite 
polynomials (pchip), etc.), we chose a piecewise linear 
interpolation for the logarithmic data. In this way, the 
obtained value for m, is the average of the slopes of the lines 
that reach a given point { N , }. In the case of extreme 
points, the slope of the associated line is chosen.  
Calculation of the m coefficient at every measured 

., N based on both, the values of m calculated at every N 
value, and the pchip interpolation. 

3.5. Application of the conversion methods to 
torsion data of a UHCS 

Figs. 3 and 4 are two examples of stress-strain curves.  
The tested material is the UHCS-1.3%C and the figures show the 
results of torsion tests carried out at 110 s  and different 
temperatures. The figure 3 shows the stress-strain curves when the 
Tresca criteria is used for calculating true stress values and the 
Von  Mises method is applied to calculate true strain values. Fig. 
4 shows the same tests, but the Von Mises method is used for true 
stress values and the Eichinger method for true strain values. 

It can be seen that the maximum strain that reached the 
material depends on the reduction method for the strain. The Von 
Mises method provides a value of ~ 30 while the Eichinger 
method gives a value of ~ 4. Since the transition from stress 
values at peak to stress values at rupture in the Eichinger method 
occurs during a shorter interval of strain, the change of the stress 
as a function of the strain is larger than the one obtained by the 
Von Mises method. Therefore, if the Eichinger method is used, 
the steady state is difficult to be determined.  

According to Von Mises, the true strain of the cylindrical 
sample is proportional to the rotation of the machine, i.e., it is 
assumed that the sample behaves as a rigid solid. However, in the 
Eichinger method, this proportionality does not appear and the 
sample behaves as a Newtonian fluid under deformation. 

Fig. 3. Tresca stress versus Von Mises strain for a UHCS-1.3%C, 
at 110 s  and various temperatures 

4. Garofalo equation and its fitting

The Garofalo equation has been fitted by two methods, RCR 
and NLD. This equation is highly nonlinear, and is also non-
convex, and its convexity varies along the entire working range.  

These two methods are very different. The NLD algorithm 
works on the linearized form of the Garofalo equation and a set of 
initial values are needed in the design domain to obtain the 
optimal solution. In contrast, the RCR method is a multi-staged 

4.	�Garofalo equation and its 
fitting

3.5.	�Application of the conversion 
methods to torsion data of a 
UHCS
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algorithm that in its first stage works on the linearized form and 
then, at the later stages, works on the non-linear form. This 
method is auto-consistent and does not need initial values.

Therefore, the results obtained by the NLD method can be 
only compared with the ones obtained in the first stage of the 
RCR method. We have checked that both results, for the UHCS, 
are very close, which allows the validation of both methods. 

Fig. 4. Von Mises Stress versus Eichinger Strain for a UHC steel, 
at 110 s  and different temperatures 

4.1. RCR method. 
The RCR method has been explained, in detail, in previous 

works [8, 9, 10]. A brief description of this method is given in order 
to compare it with the NLD method.

The parameters  4321 ,,,  are defined as the coefficients 
of the Garofalo equation },,,{ 4321 AnQ . At the 
first stage, the method minimizes the following equation that 
defines the total error.  

N

1i

2
exp
ii23

i

1'
4

,,,
zlog)ysinh(log

xN
1min

4321
    (11) 

If 2  parameter is a constant, Eq. (11) is linear in 431 ,, .
We define a minimum and maximum value for 2 , and a 2

that is the increment of 2 . These three values are the initial data 
for the algorithm. 

The minimization problem is transformed into a problem of 
multilinear regression. The optimal solution are the 4321 ,,,
values that reach a maximum of R2, and a maximum of the 
estimator F experimental of Fisher – Snedecor. They are the 
initial values for the second stage that are conducted by a direct 
non-linear regression method based on the modified Gauss-
Newton method [8, 9, 10  in order to obtain the optimal Garofalo 

equation. This second stage works on the non-linear expression of 
the Garofalo equation. This method has been implemented with 
suitable parameters for the convergence control. 

Using the definitions: ),,,( AnQ and )()( ftF ,

where 

3)2[sinh(
1

4),,( RTeTf         (12) 

is the Garofalo equation [11, 12],the equation for the algorithm of 
the Gauss-Newton method is: 

)1()1(1))1()1((1 ifyi
tFiFi

tFii   (13) 

where [y  is the strain rate matrix [11-13]. 
The optimal solution found is the beginning for the last stage 

where a fine-tuning of the global optimum is obtained. This third 
stage is an iterative method by paths in R2 that corresponds to two 
types of lines associated to alternated values of constant Q and 
[11,13]. 

4.2. NLD method
This algorithm works on the linearized form of the Garofalo 

equation. The method solves the minimization problem defined in 
Eq. 11 with the following restrictions for the design variables:  

6010;301011

1101;1000101
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3
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being )log( 4
'
4 .

An equal-spaced grid over the design domain is defined as 
follows: 

4,3,2,1i10,...,2,1k
9
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i
min
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i
max

i
)k(

i
min

      (15) 

This is a grid over a 4 domain that consists on 10.000 initial 
values. The minimization problem is solved over every point of 
the grid and the optimal solution correspond to that with the 
minimum error. The convergence criteria that have been applied 
to the optimization process are very restrictive, in the sense that 
the stop of the algorithm occurs for a very small variation of the 
cost function.  

The method to solve this minimization problem is based on 
Matlab algorithms. Concretely, the lsqcurvefit function has been 
used as central part of this method. This function uses a subspace 
trust region method based on the interior-reflective Newton 
method [14, 15]. 

In the case of the UHCS, we have fitted the Garofalo equation 
at different strains and by different conversion methods. It has 

4.1.	�RCR method

4.2.	�NLD method
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been observed that, for the solved fittings, around 9800 initial 
points converge to the same optimal solution. 

5. Evolution of the fitting parameters of 
UHCS

The fitting of the Garofalo equation for the UHCS is based on 
30 torsion tests at different strain rates and temperatures. 

Sets of {T, ’, } data at different strains have been used to fit 
the Garofalo equation. The following strain values have been 
used: strain at maximum (~0.6), 0.8, 1, 2 and 3.  

For each strain, the Garofalo equation has been fitted by the 
RCR and NLD methods. All the conversion processes have been 
used to check their influence on the parameters obtained. 

In Table 1 shows the results obtained for the UHCS at all the 
strains under consideration. All the conversion processes and the 
two fitting methods are included. 

We find that the parameters of the Garofalo equation do not 
depend significantly on the fitting method used, which means that 
both numerical methods work correctly. 

Comparing the results obtained by the NLD method and the 
first stage of the RCR method, it is observed that the n exponent 
changes less than 2%, the Q parameter changes less than 0.1%, 
changes less than 5 % and ln(A) changes less than 1%. 

Table 2 show the change of the parameters of the Garofalo 
equation between the stage 1 and stage 3 of the RCR method. The 

Von Mises method for stress and the Eichinger and Von Mises 
methods for strain have been used. The strain value is at maximum  
of the stress-strain curves. It can be seen that the total error 
decreases once the second and the third stages are applied. These 
decrease is very high, at least of one order of magnitude. Table 2 
also shows the variation of the parameters of Garofalo’s equations 
from stage 1 to 3 when the RCR method is applied. The variation 
of the n parameter is of the order of 2% in the Von Mises – Von 
Mises reduction case, and of the order 4% in the Von Mises – 
Eichinger reduction case. For the Q parameter, the relative 
variation is of the order of 3.5% and 4.5% respectively. This 
variation can be considered as an improvement of the RCR 
method while it is not possible to conduct with the NLD method. 

Figures 5 to 8 show the evolution of the four parameters of 
the Garofalo equation with increasing strain. The four conversion 
processes have been plotted. The results showed in these figures, 
have been obtained by means of the NLD method. It can be 
observed that these parameters are not strongly influenced by, 
either, Tresca or Von Mises conversion method used.  

The conversion methods for the strain have a significant influence 
on the obtained parameters.  The n and A parameters decrease with 
increasing strain. At high strains the n parameter approaches the value 
of 2. This is a typical value of a superplastic material. It is worth 
noting that this steel have shown this behavior at lower strain rates. 

The evolution of Q and  is more anomalous because it shows an 
increase with increasing strain.  This increase could be due to a 
change in the mechanism controlling plastic deformation. For 
instance, a change from slip creep to a grain boundary sliding 
mechanism is usually connected to a change in the activation energy. 

Table 1. 
Parameters of the Garofalo equation for UHCS-1.3%C for various strain values of flow curves. The parameters have been obtained by the 
stage 1 of the RCR method, and the NLD method. The usual reduction methods are used 

Nonlinear direct NLD Stage one of RRC method 
Work Stress Strain Strain

Rate
Strain
value

Cas
es n Q[kJ/mol] [MPa-1] ln(A) error n Q[kJ/mol] [MPa-1] ln(A) error 

1 VM VM VM Max. 26 4,66 274,31 0,0052 29,376 0,029 4,68 275,95 0,0050 29,535 0,033 

2 VM VM VM =0,8 26 3,83 200,02 0,0036 24,008 0,024 3,84 201,34 0,0035 24,095 0,028 

3 VM VM VM =1 26 3,83 195,63 0,0033 23,963 0,024 3,83 196,87 0,0033 23,940 0,027 

4 VM VM VM =2 26 3,02 201,01 0,0150 18,490 0,015 3,04 202,26 0,0150 18,524 0,016 

5 VM VM VM =3 26 2,00 218,12 0,0350 17,358 0,021 2,07 220,42 0,0340 17,480 0,024 

6 VM Ei Ei Max. 26 4,32 251,72 0,0050 26,167 0,030 4,32 253,27 0,0050 27,167 0,034 

7 VM Ei Ei =0,8 26 3,96 202,61 0,0030 24,920 0,020 3,96 203,90 0,0030 24,859 0,022 

8 VM Ei Ei =1 26 3,75 192,21 0,0042 22,430 0,021 3,85 191,76 0,0030 23,711 0,035 

9 VM Ei Ei =2 26 1,66 214,04 0,0044 15,610 0,021 1,65 217,34 0,0430 15,765 0,030 

10 Tr VM VM Max. 26 4,66 274,31 0,0045 29,380 0,029 4,68 275,95 0,0043 29,532 0,033 

11 Tr VM VM =0,8 26 3,83 200,01 0,0031 24,005 0,024 3,84 200,35 0,0030 24,132 0,028 

12 Tr VM VM =1 26 3,83 195,62 0,0029 23,950 0,024 3,82 196,02 0,0030 23,775 0,027 

13 Tr VM VM =2 26 3,02 200,99 0,0131 18,500 0,015 3,04 201,36 0,0030 18,521 0,016 

14 Tr VM VM =3 26 1,99 218,12 0,0305 17,360 0,021 1,91 219,62 0,0320 17,280 0,024 

15 Tr Ei Ei Max. 26 4,32 251,72 0,0043 27,170 0,030 4,32 253,29 0,0043 27,165 0,034 

16 Tr Ei Ei =0,8 26 3,96 202,58 0,0026 24,940 0,020 3,95 205,29 0,0027 24,964 0,030 

17 Tr Ei Ei =1 26 3,75 192,23 0,0036 22,430 0,021 3,32 189,22 0,0031 20,335 0,034 

18 Tr Ei Ei =2 26 1,66 214,04 0,0380 15,620 0,021 1,67 213,39 0,0370 15,574 0,023 

5.	�Evolution of the fitting 
parameters of UHCS
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Table 2. 
Parameters obtained at the first and third stages of the RCR method. 
Eichinger and Von Mises conversion methods have been used 

Stress  
conversion

Von
Mises 

Von
Mises 

Von
Mises 

Von
Mises 

Strain 
conversion

Von
Mises Eichinger Von

Mises Eichinger

Strain location Maximu
m

Maximu
m

Maximu
m

Maximu
m

Obtained values First stage Third  stage 
N 4,68 4,32 4,78 4,50 

Q [kJ/mol] 275,95 253,27 285,76 265,28 
  [Mpa-1] 0,0050 0,0050 0,0053 0,0050 
ln(A) 29,535 27,167 30,3322 28,47 

Total error 0,0327 0,0342 0,0012 0,0015 
Relative errors% 

N 2,1 4,0 
Q [kJ/mol] 3,5 4,5 

  [Mpa-1] 5,7 0,0 
ln(A) 2,6 4,6 

Fig. 5. Evolution of n with strain for UHCS-1.3%C 

6. Conclusions 
The RCR fitting method is accurate, fast and convergent. The 
NLD method is an acceptable one and its error levels are 
similar to those obtained by the first stage of the RCR. For the 
UHCS-1.3%C, the optimal solution {Q, n, ln(A), }obtained 
by the NLD method differs less than 5 % that the one 
obtained by the first stage of RCR. 

The parameters of the Garofalo equation do not depend 
significantly on the conversion methods for the stress, Tresca 
or Von Mises. However, these parameters are influenced by 
the conversion method for the strain. This is because, for a 

given strain for each method, the deformation of the material 
is larger according to Eichinger than according to von Mises. 
From a physical viewpoint, the Eichinger method considers 
the material as a Newtonian fluid since the strain is not 
proportional to the rotation of the torsion machine. 
When the Eichinger method is used, the stress does not reach 
a steady state. 
The n and Q parameters do not depend on the conversion method 
used. The  and A parameters are somewhat more dependent.  
The parameters of the Garofalo equation show a evolution 
with increasing strain. Therefore, it is necessary to study the 
differential constitutive equations to simulate the process of 
the plastic deformation outside of the steady state. 
The Garofalo equation is a useful tool to provide necessary 
conditions to the future integration of the constitutive 
equations.

Fig. 6. Evolution of Q with strain for UHCS-1.3%C 

Fig. 7. Evolution of  with strain for UHC 1.3% C 

6.	�Conclusions
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Fig. 8. Evolution of ln(A) with strain for UHC 1.3%C 
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