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ABSTRACT

Purpose: The objective of the researches presented in the paper is to investigate, in laboratory conditions, the 
application possibilities of the proposed system for tool wear monitoring in hard turning, using modern tools 
and artificial intelligence (AI) methods.
Design/methodology/approach: On the basic theoretical principles and the use of computing methods of 
simulation and neural network training, as well as the conducted experiments, have been directed to investigate 
the adequacy of the setting.
Findings: The paper presents tool wear monitoring for hard turning for certain types of neural network 
configurations where there are preconditions for up building with dynamic neural networks.
Research limitations/implications: Future researches should include the integration of the proposed system 
into CNC machine, instead of the current separate system, which would provide synchronisation between the 
system and the machine, i.e. the appropriate reaction by the machine after determining excessive tool wear.
Practical implications: Practical application of the conducted research is possible with certain restrictions 
and supplement of adequate number of experimental researches which would be directed towards certain 
combinations of machining materials and tools for which neural networks are trained.
Originality/value: The contribution of the conducted research is observed in one possible view of the tool 
monitoring system model and it’s designing on modular principle, and principle building neural network.
Keywords: Manufacturing and processing; Machining; Artificial Intelligence methods; Tool wear, Monitoring 

1. Introduction 

Modern procedures for part manufacturing impose cost 
reductions that can be realized in the following ways: increasing 
turning regime, reducing manufacturing time and number of 
rejects. In order to accomplish that in various processing 
procedures, extreme efforts of tools and machines are required. 
Processing tool condition is very influential on reducing rejects 

and standstills in manufacturing, which can directly be seen 
through geometric, surface and structural properties and 
characteristics of a processed part. 

The increase of cutting forces is directly linked to the wear 
condition of a processing tool which leads to heat increase and 
hence to structure change of the processed surface of the workpiece 
and its dimensions. Timely and adequate tool replacement presents 
a very important component in processing, and therefore in turning, 
to which a significant attention will be given in this paper. Many 

1.  Introduction



147READING DIRECT: www.journalamme.org

Manufacturing and processing

authors have considered mechanisms influencing the tool wear 
process in turning. For example, Scheffer et al [1] believe there are 
two principal characteristics influencing the reliability of turning: 
cutting speed and value of the force appearing in turning. 
Researches dealing with this topic have shown that, from the point 
of optimal time of tool life expectancy, large variations in speed and 
cutting force are not allowed. 

Based on experience, it is known that flank wear directly 
influences the quality of processed surface, and that insert 
breakage is influenced by crater wear appearing because of 
diffusion chemical reaction in processing. The experience says 
that tool wear process moves on continually and gradually, i.e. 
that the insert wear degree can be determined and one can react on 
time, while the breakage comes suddenly and continual tool 
monitoring is essential for breakage detection. The conclusion is 
that other methods can be used for tool breakage monitoring and 
collisions in relation to tool wear monitoring. 

1.1. Tool wear monitoring 

Systems for tool wear monitoring, both old and new 
generation, as its measuring value utilizes process parameters that 
are indirectly linked to tool wear, those being: force or vibration, 
Acoustic Emissions (AE) etc. The process is also influenced by 
conditions under which the processing is taking place, like tool 
geometry, tool material and product, etc. For modelling non-linear 
dependencies that are separated from the measuring signal, 
processing conditions, tool wear or tool breakage, neural 
networks, fuzzy logic systems or the combination of both methods 
are used. Balazinski et al [2] state that intelligent neural networks 
and neural fuzzy techniques are intensely studied and they present 
the most selected intelligence neural network  methods for 
merging monitoring properties. However, with commercially 
available systems, the approach “one sensor/one tool per process” 
is dominant and the application of AI method can rarely be found. 
In his survey paper, Siek [3] established that, in the previous 
period, most researchers elaborated on the tasks of classifying 
wear or breakage. Tool wear is a term not uniformly defined and 
it has to be defined clearly before stating the monitoring task. 
Tool breakage is always defined and classified by two states, 
broken or not broken. Tool wear classification has to use more 
than two tool states, that is, it should be continual evaluation of 
wear condition [4, 5]. 

Parameters defining wear are average and maximal width of 
flank wear, as well as depth, length and widths of crater wear. 
Criteria that should define wear as uniform, needs to be fixed in 
order to present the state of tool wear. If wear is defined in two 
groups (wear width), it becomes quite wide and one can recognize 
only new and significantly worn tools. To monitor wear in 
practice, it is necessary to establish several wear groups, which 
practically presents very promising monitoring strategy. It can be 
said that wear is a continual and monotonously increasing 
process; therefore, continual evaluation would most appropriately 
suit the physical processing. 

Last years have seen the intensive work to apply artificial 
intelligence (AI) method for monitoring tool wear. Thus 
Balazinski et al [2] and [6] compare the application of three AI 
methods: a feed forward back-propagation (FF-BP) neural 
network, a fuzzy decision support system (FDSS) and an artificial 

neural network-based fuzzy inference system (ANNBFIS). The 
focus is not only on the accuracy of the tool wear prediction, but 
also on practical usability of the presented methods. Ozel and 
Nadgir [7] propose the use of back-propagation neural networks 
for predicting flank wear during hard turning. Force measuring 
tests that appear in cutting processes are performed using a 
dynamometer that could measure three force components. 

In this case, the force ratio and processing conditions are 
included as characteristics of the neural network input layer; the 
hidden layer had 30 neurons, and the output layer consisted of 
eight neurons, which was a binary representation of the 
experimentally measured flank wear, i.e. eight condition 
characteristics of tool wear. For flank wear predictions, good 
results were acquired using this neural network method. 

Kothamasu and Huang [8] and Scheffer et all [1, 9] also 
propose another method based on a combination of static and 
dynamic neural networks. 

2. Proposal for a monitoring system 
model 

The proposed tool monitoring system model can basically be 
observed through four segments united in a whole that is, using 
back propagation, connected with the machine-managing unit, as 
shown in (Fig. 1). 

Special segments of the system are: 
� sensor part 
� part for data acquiring, processing and analyzing 
� part for training neural network 
� part for presenting results. 

Sensor part of the machine tool is made of measuring bearing 
placed in the front bed of the machine tool main spindle. Besides 
the measuring bearing, there is also another sensor working on the 
principle of measuring strain gauge, placed on the processing tool 
holder and designed specially for this case for measuring cutting 
forces appearing on the tool itself [10, 11, 12, 13]. 

Part for data acquiring, processing and analyzing contains 
standard A/D card ED 300, which receives input data from the 
existing sensors, converts them to digital information, and sends 
them to computer database. For information flow, the composite 
software named ED LINK is responsible, allowing the possibility 
for programming conditioning speed and type of input data [10, 11]. 

Neural network built into the system is a multi-layer 
perception network with signal spreading in one direction (feed-
forward topology), and one of the best-known types of feed 
forward neural networks. The network has three layers: the input 
layer contains three neurons, intermediate hidden layer contains m
neurons, and the output layer has one neuron. 

Software system is designed to acquire and process 
information in on-line work regime and to manage the work of 
hardware components, so it can be based on set limitations for 
monitor processing and tool wear. To establish the degree of tool 
wear, we can utilize comparative analysis of wear curves obtained 
by system training using neural networks. Determining the 
leftover tool duration is set on the basis of wear trend gained by 
comparative analysis with the wear curve and real condition. 

2.  Proposal for a monitoring 
system model

1.1. Tool wear monitoring
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Fig. 1. Algorithm of the developed tool monitoring system based 
on neural networks 

3. Neural network for tool wear 
monitoring

3.1. Pre-processing and training set 
As already stated, neural network has three inputs to which 

the force values from the sensor on the tool holder, measured 
force from measuring bearing, and cutting speed are directed. 
Using these three values, the neural network at its output 
evaluates the values of flank wear VB in the same time moment. 

For the need of training process, a set was formed containing 
30,900 input vectors and the same number of precise values of 
output variable. In creating the set, special attention was given to 
data representatives, that is, data was selected to cover all the 
interval of possible values of input variables and to be adequate to 
real change conditions. The training set formed in such a manner 
ensured that neural network correctly approximated the 
dependence of input values and output variable on the whole 
range of input sizes. 

In order to have efficient training, all the values in the training 
set were previously normalized. Normalization was performed in 
a way that every input and output size in the training set had the 
average value equal to zero, and standard deviation reduced to 

unit value. For i-th value of the input vector from the variable 
registered by the measuring bearing FRprom, normalization 
formula can be written in the following way: 
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is a standard deviation of the process variable input vector defined 
over the whole training set (N = 30,900). The formulas for other 
variables in the training set can be written similarly. 

Before the training process, apart from data normalization, it 
was necessary to perform the selection of neural network 
topology. Since the values of the output variable VB depended 
solely on momentary values of input variables, a multi-layer 
perception network with signal spreading in one direction (feed-
forward topology) was selected for network topology. In addition, 
the theory stated that the function that the resultant neural network 
had to approximate was distinctly non-linear; hence, for the 
output function of neurons in the hidden layer a sigmoid function 
was selected [14, 15]: 
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is the sum of input network sizes multiplied with appropriate 
neuron weight coefficients. 

The network used, as already said, had three layers: input, 
hidden and output, as shown in (Fig. 2); it presented a sufficient 
number of layers for the problem under observation, considering 
the fact that multi-layer perception with one hidden layer could 
with arbitrary accuracy � � 0 uniformly approximate any real 
continual function on the real final axis. 

Fig. 2. Neural network topology 

3.  Neural network for tool wear 
monitoring

3.1. Pre-processing and training set
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In the input as well as the output layer, the number of neurons 
was determined by the number of inputs, and outputs, so that 
input layer contained three neurons that corresponded to input 
variables (FRtool, FRprom, Vm/min), and the output layer 
contained one neuron whose output gave the value of the 
estimated size of flank wear VB. 

The number of neurons in the hidden layer was determined by 
experiments comparing network performances with different 
number of neurons in the hidden layer. During the experiment, 
networks were tested with two to seven neurons in the hidden 
layer, and for every topology several trainings with the same 
training set were performed so that the performances of every 
topology could be estimated as objectively as possible. Networks 
with a small number of neurons (two and three neurons) in the 
hidden layer did not present satisfactory results, which can be 
attributed to insufficiently rich network structure that implied 
small capacity for function approximation. Networks with five or 
more neurons in the hidden layer successfully approximated 
input-output dependence, so any of those topologies was adequate 
for implementation. In selecting final topology, a general 
direction was used saying that the total number of neurons in a 
neural network should be as small as possible, since in that way 
the generalization network abilities were increasing and the 
appearance of ”over fitting” was avoided. Considering all 
mentioned a network with five neurons in the hidden layer was 
selected for the final network structure. 

Fig. 3. The change of intermediate square error during neural 
network training 

Training ANN was performed with “resilient” modification of 
the basic back propagation algorithm that was designed for ANN 
with “squashing” activation functions, that is, functions that 
compress the infinite input area into the final output interval (like 
sigmoid function). These functions could cause problem while 
using basic back propagation algorithm, since the gradient could 
have very small values and therefore cause small changes in 
weight coefficients, which led to long-term training. Thus, the 
“resilient” algorithm utilized only the sign of partial inference in 
order to determine the direction of weight coefficient changes, 
while the change size was determined by a special parameter 
whose value was, during the training, changed following the 
special algorithm. 

Neural network final topology was trained several times with 
the same training set, yet each time with the new, randomly 
generated, initial values of weight coefficients (Fig. 3). For the 
maximal value of iterations, the value 1,000 was adopted, since it 
was noticed that in the later iterations the neural network error 
was not reduced by any significant value. Neural network training 
finished with the intermediate square error (calculated over the 
entire training set) in the interval between 10-3 and 10-4. This error 
was calculated with the normalized data; so, to get real value of 
intermediate square error it was necessary to multiply the gained 
value with the value of standard deviation of flank wear VB. 

On our training set, the standard deviation of flank wear had 
the value 0.0013, so the real value of intermediate square error 
was between 10-6 and 10-7.

4. Experiment setup 
Machine parameters were selected in order to respond to 

industrial application in real manufacturing. Machine conditions 
for every experiment are presented in Table 1. The experiments 
were repeated under the same conditions for the possibilities of 
training, verifying and testing neural network model. Basically, 
cutting speed and training number varied. There were ten 
experiments in total, all of them with the same basic 
configuration. However, some of the experimental conditions 
were being changed to isolate disturbances and identify the 
properties of adequate monitoring signal. Special focus was on 
ensuring that all experimental conditions remained the same, 
except for the parameters that were changed under control. The 
basic configuration of the experimental measuring setup is shown 
in (Fig. 4), and it contains CNC lathe equipped with sensors for 
measuring cutting force, those being: promess sensor and 
specially designed sensor with measuring strain gauge placed on 
the tool holder. 

Fig. 4. Basic configuration of the experimental measuring setup 

4.  Experiment setup
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Table 1.  
Experiment parameters 
 Exp. 1 Exp. 2 ... Exp. 10 
Machine INDEX GU 600 
Holder PTGNL 25x25  
Insert TNMG 220408 
Cutting depth [mm] 1 mm 
Speed [m/min] 200 
Material workpiece �.4730
Number of passing 110 132 ... 112 
Total time [min] 36 43 ... 37 
Diameter [mm] 60 60 ... 60 
Passing length [mm] 10 10 ... 15 

5. Results 
The selected appropriate model was established to be 

relatively reliable method for monitoring tool wear during hard 
turning. During the research, several different network 
configurations were used and studied for their application in tool 
wear monitoring during hard turning. 

It is known that static cutting forces are good tool wear indicators; 
however, adequate dynamic analysis of cutting forces can also give 
satisfactory properties for wear monitoring. (Fig. 5) presents cutting 
force components measured during tool wear monitoring. 
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Fig. 5. Cutting forces measured during monitoring 

Tool wear (VB) was measured after each turning and the value 
suiting one passing was linearly put into the table. Wear measuring 
was performed using tool microscope having the 30 times 
enlargement. Inserts used in the experiments were coated by TiN. 
Their life expectancy had the tendency to terminate suddenly after the 
coating disappeared from the cutting part, which could be seen in 
swift and sudden jump of cutting force. Fig. 6 shows the appearance 
of worn inserts during the experiment, a) tool insert from experiment 
1, b) tool insert from experiment 3, c) tool insert from experiment 5. 

Fig. 7 presents the agreement between the model of the 
estimated value of the trained neural network and the exact value 
gained by measuring. For better survey, Fig. 8 presents 
normalized intermediate value of the estimated value gained 
results and measured results. 

Wear measuring results used for training were given in Fig. 9 
for experiments 1-5. In each case, the model was tested on the 
previously unseen data since these parameters remained constant 
during every individual test of tool life expectancy. 

Fig. 6. Tool insert for experimental measurements 

Fig. 7. Neural network exact value and estimated value 

Fig. 8. Normalized intermediate value of real measuring and 
estimated values 
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Fig. 9. Real measuring results 

Table 2.  
Parameters of input sizes and standard deviation 

Intermediate value of 
input sizes 

Intermediate value of 
output size 

481.2658
964.7022
264.3197

0.0034

Standard deviation of 
input sizes 

Standard deviation of 
output size 

346.0206
453.1569
39.2540

0.0013

Table 2 presents intermediate value parameters of input sizes 
and with standard deviation. 

6. Future work 
The lack of neural networks (same as many other 

experimental models) requires long-term training with data 
normalization with the values expected to be working in the real 
conditions. The network cannot work without previous training. 
To expand one’s work, it is necessary to utilize both numerical 
and experimental methods. Considering the fact that the network 
should be re-trained from time to time, training period can be 
considered as a major drawback in the application of neural 
networks in real manufacturing. However, future research could 
include the integration of the existing system into CNC-machine, 
instead of currently separated device; this would ensure that 
monitoring system and machine could react synchronically, i.e. 
the machine could react by stopping once the over-worn tool is 
detected. More precisely, dynamic neural networks to ensure 
additional correction of the trained static network in on-line work 
regime could also enlarge the existing model. 

7. Conclusions 
The paper presented that neural networks (NN) can be used for 

efficient wear monitoring during hard turning, with the listed 
limitations. After considering many possible setups for wear 
monitoring model using different configuration types of neural 
networks, and based on input and output parameters, the one 
selected performed with optimal results for the selected number of 

network layers and neurons. The model was set so it could be 
upgraded rather easy by dynamic neural network, which is one of 
relatively new research directions in this field. 
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