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ABSTRACT
Purpose: The purpose of this study was to investigate the efficiency of artificial neural networks and the related 
metamodels to simulate and identify complex centreless grinding process.
Design/methodology/approach: The modelling is founded on the system approach, which is efficiently dealing 
with the complexity of the grinding process. The unknown process transfer function is identified via artificial 
neural network that requires fewer assumptions and less precise information about the process modelled than 
other conventional modelling techniques. The developed metamodel is a response surface (polynomial fit) of 
the simulated process that is achieved by the computer model.
Findings: The metamodel quality is strongly related to the prediction accuracy of the underlying simulation model. 
The generalisation capability of an artificial neural network is sensitive to the training samples (design of experiments). 
The predictive ability of a metamodel is comparable to the accuracy of the response surface regression model.
Research limitations/implications: Improved simulation model and application of unconventional metamodels 
(Gaussian process regression) will significantly improve the presented preliminary results.
Originality/value: Metamodelling of computer experiments is an expansion of response surface methodology and the 
classical designs of experiments and represents a new paradigm in empirical modelling of machining operations.
Keywords:  Manufacturing and Mechanical Engineering; Statistic Methods; Artificial Intelligence Methods; 
Grinding; Modelling

1. Introduction 

Centreless grinding is characterised by its complexity, 
nonlinearity and sensibility to a large number of input factors that 
influence system stability and output performance [1]. The most 
important quality constraints for the set-up of centreless grinding 
system are workpiece roundness and surface roughness. The latter 
will often reveal unsuitable wheel topography, incorrect grinding 
gap set-up or wrong kinematical engagements. The set-up of 
centreless grinding is still largely based on empirical competence 
of machine-tool operator. The enhancement of the process 

efficiency and the reduction of the set-up efforts require model 
based process simulation, which is a powerful tool for evaluating 
the performance of complex systems. 

Within the framework of modelling, experimental data is 
transferred into an radial basis function artificial neural network 
(RBFANN) that enable modelling of highly-uncertain, nonlinear 
data and that can be therefore used to represent  the real centreless 
grinding system [2-3]. The developed simulation model is 
subsequently approximated by advanced polynomial regression. 
Approximation of a simulation model is called a metamodel and 
is a curve fit over a series of simulated data points. The resulting 
response surface does not exactly reproduce the observations used 
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to build the simulation model. Metamodel can reveal the general 
characteristics of the more complex simulation model or 
grinding process itself and identify the statistical significance of 
the input factors [4].  

One of the major metamodelling steps in the framework of 
response surface methodology (RSM) is the selection of design 
of experiments (DoE), which determine design points for which 
the data are to be simulated [5]. DoE has a significant role in 
developing simulation metamodels. D-optimal DoE has been 
employed to develop second-order polynomial metamodel. 

2. Plunge centreless grinding 

Plunge centreless grinding has been widely employed in 
industries that require large batches of precise, rotationally 
symmetrical components. It is a complex manufacturing 
process with a great number of influencing factors that are 
nonlinear, interdependent, and difficult to quantify. A special 
process characteristic is the simultaneous support of the 
workpiece on the grinding wheel, control wheel and workrest 
blade, shown in Figure 1. Surface roughness, has been 
investigated according to the following controllable centreless 
grinding system factors: 
� Geometrical grinding gap set-up factor: the workpiece centre 

height, h,
� Grinding wheel dressing factor: the longitudinal dressing 

feed-rate, fd,
� Kinematical factor: the regulating wheel speed, nr,
� Kinematical factor: the in-feed speed, vfa.

Fig. 1. Plunge centreless grinding gap 

3. Grinding process modelling 

The input-output approach to grinding process modelling is 
dealing with the identification of a transfer function denoted by 

( )f �  that represents the relation between the outputs Y and the 
controllable inputs X, considering process fluctuations V
causing errors:  

( , )Y � X Vf� � (1)

Transfer function ( )f �  with unknown structure and 
coefficients �  can be modelled via ( )g � :

ˆˆ ( , )Y � Xg� (2)

where Ŷ  represents the prediction vector, and �̂  the estimated 
model coefficients that minimize a scalar valued loss function 

( )�L , individually defined for particular modelling approach.  
The input-output approach for identification and analysis 

of complex manufacturing systems originates in the 
correlation theory for the grinding process [6] and can be 
transferred to other machining operations [7]. In the context of 
empirical process modelling, the centreless grinding system is 
identified in form of ANN, which is able to acquire, store, and 
utilize experiential knowledge. ANN can effectively explore 
relationships in the input-output data sets through the iterative 
presentation of the data and the intrinsic characteristics of 
neural topologies. Several studies employed ANN for 
modelling of grinding processes [8]. Let suppose that the 
individual grinding process output can be modelled by a 
single-layered RBFANN: 

2
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where Ŷi  represents the network scalar output, i� is the ith
weight parameter of RBFANN, ( )g � the Gaussian function, 
which have two adjustable parameters: the centreing vector qi of
each RBF and a constant width parameter � , analogous to the 
variance, to adjust the distribution of the Gaussian RBF.  
The most widely used method of estimating the centres and 
widths is to use an unsupervised training technique called the k-
nearest neighbour rule. The input space is first clustered. The 
centres of the clusters give the centres of the RBFs, while the 
distances between the clusters provide the width of the 
Gaussians. The determination of the width is nontrivial. 
Computer algorithms use competitive learning to compute the 
centres and widths. It sets each width proportional to the 
distance between the centre and its nearest neighbour [9]. 
The synaptic weights in turn are obtained through supervised 
learning. Here the loss function is the normalized sum of mean 
squared errors: 

� �2
1

1 ˆ( ) ( , )
2

� � X
k
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i

L E Y g
k �

� �� (4)

Common method of supervised training for synaptic weights 
determination is the backpropagation training algorithm. This 
algorithm which is a stochastic gradient algorithm, that 
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recursively processes one input-output pair {Xi, Yi} at a time or 
momentum learning, which improves the gradient algorithm in 
the way that a past weight increment, is used to speed up and 
stabilize convergence. More detailed characteristics of 
backpropagation algorithm can be found in [8]. 

4. Metamodelling and D-Optimality
The fundamental idea of metamodelling relates to the 

assumption that metamodels can be used to approximate the 
computer simulation model within experimental region of interest. 
In this paper, metamodeling deals with the polynomial 
approximation of the RBFANN simulation. Metamodel is hence a 
polynomial of the input simulation vector nX  weighted by 
regression coefficients � that need to be estimated. By polynomial 
regression, we mean that for the input simulation vector 
approximation is performed whose output has the form: 

ˆŶ = �Xn n (5)

The unknown regression coefficients can be estimated by 
least squares, which loss function is defined as: 

2

1

1( ) ( )
2

n
T

j j
j

L Y
n �

� ��� �X (6)

A solution to the least squares problem of estimating �  is 
solved by setting the root-finding function ( ) ( ) / ( )d L� � �� � �   to 
zero [10]. The solution is straightforward if there are at least as 
many simulation points as coefficients to be estimated: 

ˆ 1� (X X ) X YT T
n n n n

��  (7) 

It is further important to introduce the covariance matrix of 
the least square �̂ estimator: 

2 1ˆ( ) ( )T
n nCov � ��� X X (8)

In DoE T
n nX X  is called the design matrix. The fundamental 

problem is to choose n input vectors nX , such that when RBFANN 

simulation is run, the corresponding output vector ˆnY  is as 
informative as possible. Therefore the focus is to choose nX  in some 
optimal way to enhance the accuracy of  the coefficients estimates. In 
the context of DoE the goal is to select a design �  such that �  is 
estimated with as much precision as possible. The precision is 
quantified by the determinant of the precision  
matrix, det ( , )M � �� �� � , which represents the accuracy of the �

estimate based on the n inputs of nX . Due to the close 
connection of the inverse of the covariance matrix to the precision 

matrix, a goal is to find a *� that minimizes ˆdet ( )Cov� �
� �� ; a 

design minimizing this determinant is called D-optimal [10]: 

� �� � � �* 1max det ( , ) min det ( )T
n n

�� �� � � ���
� M � � X X (9)

The polynomial fitting assessment is based on two standard 

statistics calculated via analysis of variance (ANOVA). The 2R ,
coefficient of multiple determination, which estimates the fraction 
of total variation in the data accounted by the metamodel, and the 

2Radj  statistics, adjusted to the number of terms in the metamodel 

relative to the number of simulation points, which measures the 
amount of variation about the mean explained by the metamodel. 
The determination of significant metamodel degree and the 
determination of significant metamodel factors is based on F-value 
and P-value, also calculated via ANOVA. P-values smaller than 
0.05 imply significance of the metamodel degree and particular, 
linear, quadratic or interaction term. 

5. Experimental details
Grinding experiments were conducted on a Studer Mikrosa, 

Kronos M, centreless grinding machine-tool. The grinding was 
conducted under chatter free conditions and to keep the cutting 
speed (63 m/s), the grinding depth (0.2 mm), the depth of grinding 
wheel dressing (0.02 mm), the spark out time (0.1 s), and the 
coolant flow constant. 

A vitrified grinding wheel, 22A60L6V63L, with an abrasive 
blend of monocrystalline and white aluminium oxide was used. 
Wheel dimensions were 500x88x304.8 mm. Besides, a standard 
rubber bonded control wheel of 300x103x304.8 mm dimensions 
was employed. 

The workpiece material was 9SMn28, free-cutting unalloyed 
steel, used for serial production of shafts for electric motors. The test 
workpieces of 11.15 mm diameter and 116.2 mm length were 
supported by the specially made workrest blade with the 30° angle. 

For the research, the surface roughness was quantified by the 
most used parameter Ra. It is a measure of arithmetic average of 
the absolute vertical changes of the roughness profile from the 
centre line. The measurements were carried out with a stylus type 
measuring instrument according to an ISO standard, which 
employs a high pass Gaussian filter, a sampling length of 0.8 mm 
and evaluation length of 4 mm. Each ground workpiece was 
measured three times. The surface roughness measurements,
summarized in Table 1 and Table 2, represent the average 
readings of three consecutive measurements. 

6. RBFANN model  
For RBFANN modelling a Neuro Solutions ANN simulator 

has been employed. RBFANN has three-layer feed-forward (4-24-
1) topography. Here the hidden layer with 24 neurons, cluster 
centres respectively, performs a fixed nonlinear input-output 
transformation. The transfer functions of the hidden layer are 

6.  RBFANN model

5.  Experimental details

4.  Metamodelling and  
D - Optimality
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Gaussian, which have two adjustable parameters determined by 
unsupervised learning. The transfer function of the output layer is 
a hyperbolic tangent. In this research, 29 sets of experiments have 
been carried out. The region of interest, coded {-1, 1}, is a region 
determined by factor level setting combinations that are of major 
interest. This region has been extended to the region of 
operability, coded {-2, 2}, which is determined by factor level 
setting combinations that can be operationally achieved with 
acceptable safety and will output a testable workpiece. Coded 
factor levels are summarized in Table 1. 

Table 1. 
Design factor levels 

Code h
[mm]

fd
[mm/min]

nr
[rpm] 

vfa
[µm/s] 

-2 10 100 46 10 
-1 11.5 200 51 20 

-0.5 12.25 250 53.5 25 
-0.33 12.5 267 54.3 26.7 

0 13 300 56 30 
0.33 13.5 333 57.7 33.3 
0.5 13.75 350 58.5 35 
1 14.5 400 61 40 
2 16 500 66 50 

The experimental data set has been divided into 24 training 
sets in Table 2 and 5 test sets in Table 5. The training sets used for 
process modelling have not been used for testing the generalisat 
ion capability of trained RBFANN. The training sets include five 
levels that associate the levels of four considered centreless 
grinding factors with measured surface roughness.

The number of the training epochs, that is the number of 
processing runs through the complete training data, is set to 20000 
for supervised learning and 100 for unsupervised learning. 

The performance of the trained RBFANN has been 
measured via different criteria of the training sets [9]. The 
trained RBFANN has yielded a mean square error (MSE) of 
0.004, the correlation coefficient of 0.992, Akaike's 
information criterion (AIC) value of 158.25, and Rissanen's 
minimum description length (MDL) value of 98.66. 

7. D-optimal metamodel

The major two issues in metamodelling include the 
determination of the degree of polynomial metamodel and the 
selection of adequate DoE that supports presupposed 
polynomial fitting. D-optimal design for fitting a quadratic 
polinomial consists of 35 sets of experiments that distribute 
the region of interest, coded {-1, 1} on 7 levels, coded {-1, -
0.5, -0.33, 0, 0.33, 0.5, 1} and are simulated by trained 
RBFANN according to the experimental design matrix, 
shown in Table 3. 
Metamodel fitting is computer-aided and uses a special 
decomposition algorithm on the design matrix, which is used for 

solving linear algebraic equations and linear least squares. The 
full metamodel includes some terms that are not statistically 
significant. Therefore, the next step is the metamodel reduction, 
which eliminates terms that are not significant in the way in 
which statistical hierarchy is not violated. A metamodel is 
hierarchal if the presence of quadratic and interactions terms 
requires the inclusion of all linear terms contained within those of 
higher order, even if they do not appear to be significant on their 
own. The model reduction follows the stepwise regression 
algorithm, which combines the forward and the backward 
elimination procedures [11]. 

Table 2.  
RBFANN model training set 

Set h
[mm]

fd
[mm/min]

nr
[rpm] 

vfa
[µm/s] 

Ra
[µm]

1 13 300 66 30 0.88 
2 16 300 56 30 1.12 
3 14.5 200 51 40 0.70 
4 13 100 56 30 0.35 
5 11.5 200 61 40 0.70 
6 14.5 400 61 20 1.27 
7 11.5 200 51 40 0.69 
8 11.5 200 61 20 0.70 
9 14.5 200 61 40 0.71 

10 11.5 400 51 40 1.32 
11 14.5 200 61 20 0.67 
12 14.5 400 61 40 1.32 
13 13 500 56 30 1.20 
14 10 300 56 30 0.60 
15 13 300 56 50 1.27 
16 14.5 200 51 20 0.73 
17 13 300 56 30 1.20 
18 11.5 400 61 20 1.26 
19 13 300 56 30 1.23 
20 13 300 56 10 0.79 
21 13 300 46 30 0.84 
22 14.5 400 51 40 1.23 
23 11.5 400 51 20 1.33 
24 13 300 56 30 1.21 

The developed D-optimal metamodel has three significant 
factors, h, fd, vfa

2 and one hierarchal factor, vfa. The metamodel 

fitting assessment yields 2 0.9575R � , and the 2 0.9501Radj � .

The D-optimal metamodel can be formulated in a form of reduced 
polynomials in terms of dimensionless coded factors: 

2

0.9 0.028 0.3

0.018 0.083 0.025
a d

fa fa fa

R h f

v v h v

� � � �

� � �
 (10) 

Response surface plots give a good overview of the design 
space, displaying how the surface roughness varies with two 
selected input factors. Figure 2 and Figure 3 present the three 
dimensional response surface plots of the surface roughness 
plotted against the two most influential plunge centreless grinding 
system factors within the region of interest, while the remaining 
two off-axis factors were fixed to their central level. 

7.  D - optimal metamodel
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Table 3. 
D-optimal DoE 

Set h
[mm]

fd
[mm/min]

nr
[rpm] 

vfa
[µm/s] 

Ra
[µm]

1 11.5 266.7 61 26.7 0.68 
2 11.5 266.7 54.3 20 0.80 
3 14.5 200 51 33.3 0.63 
4 13.5 200 61 33.3 0.61 
5 11.5 333.3 51 33.3 1.02 
6 11.5 400 61 40 1.14 
7 14.5 333.3 51 20 1.05 
8 11.5 400 57.7 26.7 1.19 
9 11.5 333.3 54.3 40 1.17 

10 14.5 300 51 40 1.01 
11 13.5 333.3 61 20 1.05 
12 12.5 200 51 40 0.69 
13 13.75 250 53.5 25 0.82 
14 13 250 58.5 35 0.83 
15 14.5 400 61 20 1.26 
16 11.5 200 51 20 0.70 
17 14.5 200 56 40 0.80 
18 14.5 400 61 30 1.28 
19 14.5 400 57.7 40 1.32 
20 13.5 400 61 40 1.30 
21 11.5 400 54.3 33.3 1.21 
22 11.5 200 54.3 33.3 0.43 
23 11.5 200 61 20 0.69 
24 11.5 200 61 40 0.70 
25 14.5 200 54.3 20 0.65 
26 11.5 400 51 40 1.26 
27 14.5 200 61 20 0.67 
28 13.5 400 51 40 1.27 
29 13.5 400 54.3 20 1.27 
30 11.5 400 61 20 1.26 
31 13.5 200 51 20 0.67 
32 11.5 400 51 20 1.28 
33 12.25 350 53.5 25 1.18 
34 14.5 400 51 30 1.22 
35 14.5 266.7 61 40 1.00 

The metamodel assessment is based on ANOVA, summarized 
in Table 4. 

Table 4. 
ANOVA for D-optimal metamodel 

Source Sum of  
Squares DF Mean

Square F-value P-value 

Model 2.34 5 0.47 130.58 < 0.0001 
h 0.020 1 0.020 5.64 0.0244 
fd 2.27 1 2.27 631.32 < 0.0001 
vfa 0.008 1 0.008 2.20 0.1484 
vfa

 2 0.041 1 0.041 11.44 0.0021 
h x vfa 0.011 1 0.011 3.19 0.0845 

Residual 0.10 29 0.0035 
Total 2.45 24    
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Fig. 3. Metamodel response surface plot h - fd

In addition to response surface plot it is useful to plot the 
standard error of design to show how the error in the predicted 
metamodel response varies over the design space. The plot, 
shown in Fig. 4, exhibits nonsymmetrical contours, which are 
characteristic for D-optimal designs. 
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8. Modelling and metamodelling 
performance assessment  

The simulation of the RBFANN model and accuracy of D-
optimal metamodel are evidented in Table 5, where the simulated 
values (Ra*) of the RBFANN model and its metamodel (Ra**) are 
compared to the measurements (Ra).

Table 5. 
RBFANN model and D-optimal metamodel testing set 

Set h
[mm]

fd
[mm/min]

nr
[rpm] 

vfa 
[µm/s] 

Ra
[µm]

Ra*
[µm] 

Ra**
[µm] 

1 14.5 400 51 20 1.34 1.27 1,24 
2 11.5 400 61 40 1.27 1.14 1,10 
3 13 300 56 30 1.23 1.21 0,97 
4 11.5 200 51 20 0.77 0.70 0,66 
5 13 300 56 30 1.22 1.21 0,97 

The difference between the measured and simulated surface 
roughness is illustrated in Figure 5. 
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0,95
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1,15
1,25
1,35

1 2 3 4 5
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R a
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m
]

Measurement
RBFANN model
D-optimal metamodel

Fig. 5. Modelling and metamodelling efficiency 

The relative performance assessment of modelling and 
metamodelling is quantified with two different criteria related to 
the testing set in Table 2. The first is the mean squared error of 
prediction:

2

1

ˆ1/ ( )
m

l l
l

MSEP m Y Y
�

� ��  (11) 

and the second is the mean absolute percentage deviation: 

1

ˆ1/ ( )/
m

l l l
l

MAPD m Y Y Y
�

� ��  (12) 

The relative performance assessment of developed model and 
its metamodel is quoted in Table 6. 

Table 6. 
Relative performance assessment 

Model / metamodel MSEP MAPD [%] 
RBFANN model 0,00544 5,399 

D-optimal metamodel 0,03601 15,297 

9. Conclusions
The objectives of this study refer to development of surface 

roughness computer simulation model and its polynomial 
metamodel, for the plunge centreless grinding process. 

When dealing with complex systems, simulation is a good 
alternative for process performance evaluation and subsequent 
optimisation [12]. Usually, RSM is applied to a real process, 
such as grinding, milling, forming. However, RSM can also be 
applied to computer simulation model of a real system in which 
RSM is used to develop a model of the system being modelled 
by the computer simulation, i.e. metamodel. In this way, 
computer simulation model represents an abstraction of real 
centreless grinding system in terms of its components, factors 
and relationships. To obtain an acceptable understanding of a 
simulated system, experiments must be performed on their 
elements through adequate simulation runs. However, as 
abstractions of the real process, all simulations have limits of 
credibility. Therefore there is no shortcut to having sufficiently 
deep understanding of the real system and its relationship to the 
simulation. With the limitations in mind, the methods in this 
paper are powerful tools of required process improvement as 
stressed in the paper introduction. 

Because of the nonlinear nature of the grinding processes 
use of ANN has been attempted. The experimental data, Table 
2, have been utilized to train the RBFANN, which proved 
adequate predictive simulation capability, as shown in Figure 3. 
The determination of the RBFANN training epochs and rates is 
largely dependent on modeller competence. Therefore, it is hard 
to find adequate ANN training parameters and to ensure the 
quality of the model and overfitting. In practice the fact 
remains, however, that ANN modelling still requires expertise 
and know-how. Further it is useful to stress that ANN is only a 
complement to the classical statistical tools of regression analysis, 
RSM, and DoE advocated in [13-14], but not a complete 
replacement for them, because ANN can only give a prediction 
model and not fundamental insight into the process. Besides 
RBFANNs, feedforward backpropagation ANNs are also 
universal function approximators that are widely employed in 
modelling of machining operations.   

The developed metamodel is a polynomial approximation of 
the input-output transformation that is implied by the simulation 
RBFANN model. Metamodels can be used for better process 
understanding, prediction, optimisation or the validation of 
simulation model. Metamodelling consists of two phases: DoE, in 
which a set of experiments in the design space is selected, and 
polynomial fitting, in which the simulated values from the DoE 
are evaluated and used to build a reasonably accurate 
approximation for a response surface. 

The importance of using optimum design of experiments 
when selecting the simulation input vector has been highlighted. 
In this way the D-optimality criterion has been used to improve 
the estimates of unknown metamodel coefficients and to enhance 
the metamodel robustness via minimisation of the determinant of 
the covariance matrix.  

All experimental data obtained from previous studies, have 
been used to compare the models/metamodels based on the 
relative prediction accuracy and their ability to interpolate and 
extrapolate. The predictive ability of D-optimal metamodel is 

8.  Modelling and metamodelling 
performance assessment

9.  Conclusions
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comparable to the accuracy of response surface regression model, 
while RBFANN model surpasses it [14].  

On the basis of metamodel ANOVA, it has been found out 
that the grinding wheel dressing condition most significantly 
affects the ground surface roughness, which is additionally 
affected by the geometrical grinding gap set-up factor and the 
in-feed speed. Factor interaction effects proved to be 
insignificant.
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