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ABSTRACT
Purpose: The aim of the study is to establish a system that supports the choice of steel grade for quenching and 
tempering at a required hardness curve as function of cooling rate from the austenitising temperature.
Design/methodology/approach: It has been assumed that the steel will meet the criterion provided that the 
hardness curve, defined by the user, is included within the range of hardness change that is characteristic of a 
certain steel grade. In order to determine the steel hardness ranges it has been necessary to work out a suitable 
calculation model. Therefore, a neural network has been designed and verified numerically to calculate the steel 
hardness on the basis of chemical content for the predetermined cooling rate. To develop the relationship between 
the chemical composition, austenitising temperature, cooling rate and hardness of the steels for quenching and 
tempering the artificial neural network was used. The obtained results were used  for determination of neural 
classifier. The classifiers based on the neural networks carries out the task of  selection of the steel grade.
Findings: Artificial neural networks can be applied for selection of steel with the assumed hardness after cooling 
from the austenitising temperature.
Practical implications:The system presented can be applied to selection of steel grade intended for machine 
parts of predetermined hardness in the section of a hardened or normalized element.
Originality/value: The research presented in this paper offers a new strategy useful in selection of steel grade.
Keywords: Metallic alloys; Artificial intelligence methods; Heat treatment; CCT Diagram; Hardness

1. Introduction 
The appropriate selection of the material for the particular 

application, based on the multi-criterion optimisation taking into 
account its chemical composition, manufacturing conditions, 
operating conditions, and the material waste disposal method in 
its after-service phase, as well as the price-dependant issues 
connected with obtaining the material, its transforming into a 
product, the product itself, and also costs of disposal of the 
industrial waste and scrap, as well as modelling of all processes 
and properties connected with materials, feature the fundamentals 

of the dynamically developing computational materials science. 
Various models are employed in the computational materials 
science, depending on scale and also possibilities of using the 
engineering materials modelling, their synthesis, structure, 
properties, and phenomena. The experimental verification enables 
to check the computer simulation in various scales and using the 
artificial intelligence methods, for employing the new materials 
and their manufacturing processes. 

The Computer Aided Materials Selection Systems (CAMS)
and the Computer Aided Materials Design ones (CAMD) have 
found their right position within the framework of the Computer 
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Aided Design (CAD) and Computer Aided Manufacturing (CAM) 
systems. Simultaneously, the designer’s personal experience and 
intuition, and even his customary attitude roles’ importance are 
gradually decreasing in the engineering materials selection for the 
particular applications. The subjective factors, and even mistakes, 
are being eliminated more and more, and the selected materials 
have the most advantageous mechanical, functional, and 
technological properties, with the right density, meet the 
ecological requirements, and all that at the lowest attainable 
materials’ costs and products made from them. The intensive 
research dedicated to this topic is to go on in many centres. [1] 

The need for making more and more effective and reliable 
systems of processing information that are able to recognize, 
forecast, associate and control, has caused the development of 
artificial neural networks.  Artificial neural networks are applied 
to solve practical tasks in very diverse areas like finance, 
medicine, physics, geology, military science or engineering.   
Artificial neural networks have, in recent years, become the tool 
also used in materials science as many publications in this field 
prove. [2-6] The essential reason for such a growing popularity of 
neural networks is the fact that creating relations between the 
examined quantities does not require mathematical description of 
the analyzed problem but only a representative analysis of the 
experimental data sets.  In most cases, the analysis of the results 
received, using neural networks justifies the application of this 
method.  Among the most important properties of neural networks 
one can enumerate the ability of parallel signal transformation as 
well as the ability to learn which consists in estimating the weight 
values describing the connections between particular lattice points 
on the basis of presented examples.  The attribution of a proper 
semantic interpretation to the signals and artificial neural 
networks’ cells enables to collect knowledge in its structure.  
Artificial neural networks can be applied as knowledge basis in 
expert systems.  The process of gaining knowledge amounts in 
this case to preparing a set of learning signals in the form of 
examples and to determining the type and structure of neural 
network as well as defining other parameters like error function, 
activation function, variable scaling method.  It also helps to 
determine the weight values for connections between neurons in 
the learning process of the neural network according to the 
established algorithm. [7]

2. Material and experimental 
methodology 

The data set was developed basing on literature data, 
including chemical compositions, austenitising temperature (TA)
and the CCT diagrams of the steels for quenching and tempering.. 
The obtained curves were worked out, assuming mass fractions of 
the alloying elements as the criterion. The ranges of the assumed 
mass fractions of elements are included in Table 1. 

The aim of the study is to establish a system that supports the 
choice of steel grade for quenching and tempering at a required 
hardness curve as function of cooling rate from the austenitising 
temperature. It has been assumed that the steel will meet the 
criterion provided that the hardness curve, defined by the user, is 
included within the range of hardness change that is characteristic 
of a certain steel grade. The hardness range for the certain steel 

grade has been defined by the highest and lowest hardness 
calculated for ten predetermined successive time units until the 
end of steel cooling from the austenitising temperature. The 
example of the hardness range changes as function of cooling rate 
for the 38Cr2 steel grade has been presented in Figure 1. 

Table 1 
Ranges of mass concentrations of elements  

Mass fractions of elements, % 

R
an

ge

C Mn Si Cr Ni Mo V 

min 0.22 0.30 0.05 0 0 0 0 

max 0.60 1.60 1.37 2.20 2.20 0.50 0.25 

Fig. 1. Hardness range changes as function of cooling rate for the 
38Cr2 steel grade 

In order to determine the steel hardness ranges it has been 
necessary to work out a suitable calculation model for the mass 
concentration range of elements shown in Table 1. Therefore, a 
neural network has been designed and verified numerically to 
calculate the steel hardness on the basis of chemical content for 
the predetermined cooling rate.  The training set has been 
established due to literature data. Then for each steel grade 
(according to EN-10083-1) 150 chemical contents have been 
made at random and the hardness for ten predetermined cooling 
rates has been calculated. As a result, there has been made a 
training set for another artificial neural network whose task is to 
suggest the steel grade after the hardness for 10 average cooling 
rates have been defined by the user.  

The data was divided into three sets: training, validating and 
testing one. The training set was used for development of the 
neural network model, the validating set was used for checking 
the model during establishing the values of weights, and the 
testing set was used for verifying the model when the network 
training was completed. Allocation of data to the particular 
subsets was done randomly. 

The following quantities determined for the testing set were 
used as the basic coefficients for evaluation of the neural network 
model performance: average network prediction error, standard 
deviation of the network prediction error, quotient of the standard 
deviations of the prediction errors and of the standard deviation of 

the resulting variable, Pearson correlation coefficient and for 
classification problems: coefficient expressing in [%] the number 
of correct classifications. 

3. Calculation of steel hardness 
To develop the relationship between the chemical 

composition, austenitising temperature, cooling rate, and hardness 
of the  steel the feedforward neural network (MLP) was used. The 
activation level of the successive 13 network input nodes 
depended on: mass concentration of elements (C, Mn, Si, Cr, Ni, 
Mo, V), austenitising temperature, cooling rate, and structure 
type. The average cooling rate has been calculated on the basis of 
the time until the end of steel cooling from the austenitising 
temperature. As the cooling rate in the CCT graphs is within the 
range of 1 second and 105 seconds, the obtained value of average 
cooling rate has been normalized by calculation of the fourth root 
of the value.  The number of vectors was determined in the 
particular sets: 1000, 368, 368. The type of structure developed 
after cooling the steel at a particular rate was specified using four 
binary nominal variables.  

Determining the curve of hardness changes versus cooling rate, 
according to the method proposed in the paper, calls for 
determining the types of the structural constituents that occur in the 
steel after cooling from the austenitising temperature. The types of 
the structural constituents were determined using four bivalued 
nominal variables containing the information if the following 
constituents are present in the structure: ferrite, pearlite, bainite, 
martensite. A classifier had to be developed, to obtain this 
information, using as input data the mass concentrations of the 
particular alloying elements, austenitising temperature, and cooling 
rate. The detailed problem description was presented in [8-12]. 

Hardness was determined basing on the activation level of a 
single neuron in the network output layer. The number of hidden 
layers and number of nodes in these layers, were specified 
analyzing the effect of these quantities on the network 
performance coefficient values. The number of training epochs 
was determined by observing the network forecast error for the 
training and validating sets. The network with one hidden layer 
and numbers of neurons in these layer as 13 was assumed to be 
optimal. Training method was used based on the conjugate 
gradient algorithm. Values of errors as well as quotients of 
standard deviations and the Pearson correlation coefficient r 
obtained for the steel hardness calculations, depending on the 
cooling rate for the developed neural network model are presented 
in Table 2. The comparative plots for the experimental and 
calculated hardness values are presented in Figure 2. 

Table 2 
Error values and correlation coefficients for hardness calculated 
for data from the training / validating / testing data sets 

Data set Error EHV,
HV

Quotient of 
standard

deviations

Pearson 
correlation 
coefficient 

Training 31.2 0.24 0.97
Validating 36.3 0.29 0.96

Testing 33.5 0.28 0.96

4. Selection of steel grade 
It has been required to prepare a representative training 

database in order to design a neural network as a classifier that on 
the basis of the hardness curve defined by the user is able to select 
the optimal steel grade. 

To prepare the database containing the information about the 
randomly selected chemical compositions of steel, taking into 
account limitations presented in Table 1, the computer program 
was developed generating random chemical compositions of steel 
basing on user specified parameters: 
� range of mass concentrations for each element, 
� number of cases. 

Austenitising temperature was determined as the Ac3+50°C 
temperature for the prepared set of 150 various chemical 
compositions for each steel grade and next hardness was calculated 
for ten assumed average cooling rates. To calculate the Ac3
temperature on the basis of element mass concentrations, the artificial 
neural network presented in the paper [13] has been applied .  

It has been assumed that average cooling rates will be 
calculated for the time until the end of steel cooling from the 
austenitising temperature. The following values of cooling rates 
have been accepted: 5, 10, 20, 50, 100, 200, 500, 1000, 5000 and 
100000 seconds. 

Two options of network response coding have been analysed. 
In the first option, there has been used one output variable equal 
to the number of steel grades. In the other, the number of output 
variables equal to the number of classes have been applied on the 
assumption that each variable can have two (yes or no) values to 
state whether certain steel meets the user’s requirements. For 
calculations the feedforward neural networks have been applied. 
Mutual entropy has been applied as error function.  In that case, 
the error is calculated as a product-sum of assumed values and 
error algorithms for each output neuron. This version of error 
function, designed especially for classifying problems, is used 
with output layer activation function of the softmax type. The 
softmax function is an exponential function of additionally 
normalized value so as the activation sum for the whole layer is 1. 
The application of the softmax function in the output layer of 
multilayer perceptron designed for classifying problem solutions, 
allows to interpret the neuron’s activation level of the output layer 
as the estimated probability of a certain class affiliation.  

4.1. Selection of steel grade by means of one 
output variable 

For neural network response code by means of one dependent 
the number of neurons in the output layer variable has been used 
that is equal to the number of nominal-value variables, so 
eventually equal to the number of classes. The one-z-N 
conversion type has been applied. The class attribution of the 
investigated case requires stimulation of one neuron and 
simultaneous disconnection of the others. It is the level of 
activation of the winning neuron that decides on  the class 
attribution. Each training vector consisted of 10 calculated values 
of steel hardness and a nominal output variable in the form of 
steel grade marking. 

2.  Material and experimental 
methodology
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Fig. 1. Hardness range changes as function of cooling rate for the 
38Cr2 steel grade 

In order to determine the steel hardness ranges it has been 
necessary to work out a suitable calculation model for the mass 
concentration range of elements shown in Table 1. Therefore, a 
neural network has been designed and verified numerically to 
calculate the steel hardness on the basis of chemical content for 
the predetermined cooling rate.  The training set has been 
established due to literature data. Then for each steel grade 
(according to EN-10083-1) 150 chemical contents have been 
made at random and the hardness for ten predetermined cooling 
rates has been calculated. As a result, there has been made a 
training set for another artificial neural network whose task is to 
suggest the steel grade after the hardness for 10 average cooling 
rates have been defined by the user.  

The data was divided into three sets: training, validating and 
testing one. The training set was used for development of the 
neural network model, the validating set was used for checking 
the model during establishing the values of weights, and the 
testing set was used for verifying the model when the network 
training was completed. Allocation of data to the particular 
subsets was done randomly. 

The following quantities determined for the testing set were 
used as the basic coefficients for evaluation of the neural network 
model performance: average network prediction error, standard 
deviation of the network prediction error, quotient of the standard 
deviations of the prediction errors and of the standard deviation of 

the resulting variable, Pearson correlation coefficient and for 
classification problems: coefficient expressing in [%] the number 
of correct classifications. 

3. Calculation of steel hardness 
To develop the relationship between the chemical 

composition, austenitising temperature, cooling rate, and hardness 
of the  steel the feedforward neural network (MLP) was used. The 
activation level of the successive 13 network input nodes 
depended on: mass concentration of elements (C, Mn, Si, Cr, Ni, 
Mo, V), austenitising temperature, cooling rate, and structure 
type. The average cooling rate has been calculated on the basis of 
the time until the end of steel cooling from the austenitising 
temperature. As the cooling rate in the CCT graphs is within the 
range of 1 second and 105 seconds, the obtained value of average 
cooling rate has been normalized by calculation of the fourth root 
of the value.  The number of vectors was determined in the 
particular sets: 1000, 368, 368. The type of structure developed 
after cooling the steel at a particular rate was specified using four 
binary nominal variables.  

Determining the curve of hardness changes versus cooling rate, 
according to the method proposed in the paper, calls for 
determining the types of the structural constituents that occur in the 
steel after cooling from the austenitising temperature. The types of 
the structural constituents were determined using four bivalued 
nominal variables containing the information if the following 
constituents are present in the structure: ferrite, pearlite, bainite, 
martensite. A classifier had to be developed, to obtain this 
information, using as input data the mass concentrations of the 
particular alloying elements, austenitising temperature, and cooling 
rate. The detailed problem description was presented in [8-12]. 

Hardness was determined basing on the activation level of a 
single neuron in the network output layer. The number of hidden 
layers and number of nodes in these layers, were specified 
analyzing the effect of these quantities on the network 
performance coefficient values. The number of training epochs 
was determined by observing the network forecast error for the 
training and validating sets. The network with one hidden layer 
and numbers of neurons in these layer as 13 was assumed to be 
optimal. Training method was used based on the conjugate 
gradient algorithm. Values of errors as well as quotients of 
standard deviations and the Pearson correlation coefficient r 
obtained for the steel hardness calculations, depending on the 
cooling rate for the developed neural network model are presented 
in Table 2. The comparative plots for the experimental and 
calculated hardness values are presented in Figure 2. 
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Error values and correlation coefficients for hardness calculated 
for data from the training / validating / testing data sets 

Data set Error EHV,
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Quotient of 
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deviations
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correlation 
coefficient 
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Validating 36.3 0.29 0.96
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4. Selection of steel grade 
It has been required to prepare a representative training 

database in order to design a neural network as a classifier that on 
the basis of the hardness curve defined by the user is able to select 
the optimal steel grade. 

To prepare the database containing the information about the 
randomly selected chemical compositions of steel, taking into 
account limitations presented in Table 1, the computer program 
was developed generating random chemical compositions of steel 
basing on user specified parameters: 
� range of mass concentrations for each element, 
� number of cases. 

Austenitising temperature was determined as the Ac3+50°C 
temperature for the prepared set of 150 various chemical 
compositions for each steel grade and next hardness was calculated 
for ten assumed average cooling rates. To calculate the Ac3
temperature on the basis of element mass concentrations, the artificial 
neural network presented in the paper [13] has been applied .  

It has been assumed that average cooling rates will be 
calculated for the time until the end of steel cooling from the 
austenitising temperature. The following values of cooling rates 
have been accepted: 5, 10, 20, 50, 100, 200, 500, 1000, 5000 and 
100000 seconds. 

Two options of network response coding have been analysed. 
In the first option, there has been used one output variable equal 
to the number of steel grades. In the other, the number of output 
variables equal to the number of classes have been applied on the 
assumption that each variable can have two (yes or no) values to 
state whether certain steel meets the user’s requirements. For 
calculations the feedforward neural networks have been applied. 
Mutual entropy has been applied as error function.  In that case, 
the error is calculated as a product-sum of assumed values and 
error algorithms for each output neuron. This version of error 
function, designed especially for classifying problems, is used 
with output layer activation function of the softmax type. The 
softmax function is an exponential function of additionally 
normalized value so as the activation sum for the whole layer is 1. 
The application of the softmax function in the output layer of 
multilayer perceptron designed for classifying problem solutions, 
allows to interpret the neuron’s activation level of the output layer 
as the estimated probability of a certain class affiliation.  

4.1. Selection of steel grade by means of one 
output variable 

For neural network response code by means of one dependent 
the number of neurons in the output layer variable has been used 
that is equal to the number of nominal-value variables, so 
eventually equal to the number of classes. The one-z-N 
conversion type has been applied. The class attribution of the 
investigated case requires stimulation of one neuron and 
simultaneous disconnection of the others. It is the level of 
activation of the winning neuron that decides on  the class 
attribution. Each training vector consisted of 10 calculated values 
of steel hardness and a nominal output variable in the form of 
steel grade marking. 

3.  Calculation of steel hardness

4.  Selection of steel grande

4.1.  Selection of steel grade of one 
output variable
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The numbers of neurons in the hidden layer, as well as the 
method and training parameters, were assumed by analyzing the 
effect of these quantities on the network quality evaluation 
parameters. Training method was used based on the conjugate 
gradient algorithm. The number of training epochs was determined by 
observing the network forecast error for the training and validating 
sets. The network with one hidden layer and numbers of neurons in 
these layer as 26 was assumed to be optimal.  

On the basis of network response analysis it has been stated 
that the network provides most often false responses for five steel 
grades. It has been observed that for a certain steel grade the 
network usually indicates the same equivalent. It is true of the 
steel grades whose ranges of element concentration mass partially 
overlap, but ranges of steel hardness change in function of cooling 
rate from the austenitising temperature have common values. It 
has been acknowledged that such cases can be regarded as correct 
network responses because the assumed hardness curve is 
included in the hardness range of both steel grades. On that basis 
an amended coefficient of the correct classifications has been 
calculated. The values of the coefficient of the correct 
classifications have been calculated and the amended coefficient 
of the correct classifications for the training, validating and testing 
sets have been presented in Table 3. The number of network false 
responses for the successive data sets have been presented in 
Table 4. Figures 3-4 show the examples of hardness curve in 
function of time necessary for sample cooling from the 
austenitising temperature against a background of the range of 
hardness change for steel grades accepted as a model and 
suggested by the network. 

Table 3 
The values of the coefficient of the correct classifications 

Data sets 
training validating testing 

Coefficient of the correct 
classifications, % 91.0 92.0 93.0 

Amended coefficient of the 
correct classifications, % 99.6 98.9 98.1 

Table 4 
The number of network false responses 

Data sets Neural
network
response

Learning 
pattern training validating testing 

37Cr4 34Cr4 39 15 14 
37Cr4 41Cr4 34 12 12 
38Cr2 46Cr2 8 5 6 
48Si7 56Si7 5 4 3 
42CrMo4 50CrMo4 2 2 1 

4.2. Selection of steel grade by means of many 
output variables 

The other option of neural network response coding has been 
the application of the number of output variables equal to the 

number of steel grades (classes). In that case, the number of 
neurons in the network output layer has been assumed according 
to the number of steel grades. The double conversion has been 
applied, which means that each variable could have one of the two 
nominal values indicating either class affiliation or the lack of a 
certain class affiliation. For neurons in the output layer the values 
of acceptance and rejection level have been established. The value 
of the activation of output layer neuron that is higher than the 
acceptance level has been interpreted as the selection of steel 
grade that meets the predetermined requirements. The activation 
level of the output layer neuron that is lower than the rejection 
level has excluded the steel grade from the accepted selection. 
The presented method of the neuron network response coding 
makes it possible for unclassified cases to arise, that is the ones 
whose value of activation of the output neuron is between the 
acceptance and rejection levels. The change of values of the 
acceptance and rejection levels allows to eliminate unclassified 
cases; however, in the investigated case such action seems 
pointless. The application of the error function in the form of 
mutual entropy and the output layer activation function of the 
softmax type allows to interpret the value of the signal as 
probability of class affiliation. Similar values of signals for 
several output neurons should be regarded as possibility of several 
steel grades selection.  In this case, the result of the artificial 
neuron network calculations is a set of possible outcomes but the 
final decision is to be made by the user. 

As a result of optimization of neuron network parameters a 
network of a hidden layer with 12 neurons has been accepted. The 
training method based on the conjugate gradient algorithm has 
been applied. The training set of 311 training epochs has been 
applied to the neural network. Table 5 presents coefficients of 
correct classifications and amended coefficients  calculated on the 
assumption that ambiguous responses (unclassified cases) can be 
interpreted as different variants of the network correct responses. 
The number of unclassified cases for each data sets have been 
presented in Table 6. All the unclassified cases have been 
analysed by means of hardness curve graphs in function of 
cooling rate against the background of steel hardness ranges 
suggested as possible outcomes. Figures 5-7 show the example of 
predetermined hardness curve in function of time necessary for 
cooling the sample from the austenitising temperature against the 
background of hardness ranges for steel grades: the one assumed 
as a model and the one suggested by the neural network. 
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Fig. 3 Comparison of the predetermined hardness curve and range 
of hardness change accepted as a model (37Cr4) and suggested by 
the neural network (41Cr4) 
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Fig. 4 Comparison of the predetermined hardness curve and range 
of hardness change accepted as a model (34Cr4) and suggested by 
the neural network (37Cr4) 

Table 5 
The values of the coefficient of the correct classifications 

Data sets 

training validating testing 
Coefficient of the correct 
classifications, % 71.6 71.6 69.2 

Amended coefficient of the 
correct classifications, % 99.5 98.7 98.5 

Table 6 
The number of unclassified cases 

Data sets 
Variant 1 Variant 2 

training validating testing 

37Cr4 34Cr4 36 13 14 

37Cr4 41Cr4 82 40 51 

38Cr2 46Cr2 97 50 65 

48Si7 56Si7 8 3 5 

42CrMo4 50CrMo4 4 7 2 
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Fig. 5. Comparison of the predetermined hardness curve and  
hardness ranges for steel grades suggested by the neural 
network: variant 1-42CrMo4; variant 2 – 50CrMo4 
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Fig. 6. Comparison of the predetermined hardness curve and  
hardness ranges for steel grades suggested by the neural 
network: variant 1-34Cr4; variant 2 – 37Cr4 
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Fig. 7. Comparison of the predetermined hardness curve and  
hardness ranges for steel grades suggested by the neural 
network: variant 1-38Cr2; variant 2 – 46Cr2 

5. Summary 
The study presents a design of the advisory system whose task 

is to support the selection of steel grade of predetermined 
hardness in function of cooling rate from the austenitising 
temperature. The artificial neural networks have been applied to 
develop the project. Two options of neural network response 
coding have been used. The first one, by means of one variable 
whose value is equal to the number of classes of possible 
outcomes, and  the other, by means of the number of output 
variables that is equal to the number of classes, where each 
variable can have two nominal values: confirming and rejecting 
value of class affiliation. The application of error function in the 
form of mutual entropy and the output layer activation function of 
the softmax type allows to interpret the value of the output neuron 
activation as probability of class affiliation. There may appear 
such cases in which the function of the artificial neural network 
can be limited to development of a set of possible outcomes and 
the final decision should be made by the user.  

The system presented can be applied to selection of steel 
grade intended for machine parts of predetermined hardness in the 
section of a hardened or normalized element. Differences of 

3.1.  Selection of steel grade by 
means of many output variables
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The numbers of neurons in the hidden layer, as well as the 
method and training parameters, were assumed by analyzing the 
effect of these quantities on the network quality evaluation 
parameters. Training method was used based on the conjugate 
gradient algorithm. The number of training epochs was determined by 
observing the network forecast error for the training and validating 
sets. The network with one hidden layer and numbers of neurons in 
these layer as 26 was assumed to be optimal.  

On the basis of network response analysis it has been stated 
that the network provides most often false responses for five steel 
grades. It has been observed that for a certain steel grade the 
network usually indicates the same equivalent. It is true of the 
steel grades whose ranges of element concentration mass partially 
overlap, but ranges of steel hardness change in function of cooling 
rate from the austenitising temperature have common values. It 
has been acknowledged that such cases can be regarded as correct 
network responses because the assumed hardness curve is 
included in the hardness range of both steel grades. On that basis 
an amended coefficient of the correct classifications has been 
calculated. The values of the coefficient of the correct 
classifications have been calculated and the amended coefficient 
of the correct classifications for the training, validating and testing 
sets have been presented in Table 3. The number of network false 
responses for the successive data sets have been presented in 
Table 4. Figures 3-4 show the examples of hardness curve in 
function of time necessary for sample cooling from the 
austenitising temperature against a background of the range of 
hardness change for steel grades accepted as a model and 
suggested by the network. 

Table 3 
The values of the coefficient of the correct classifications 

Data sets 
training validating testing 

Coefficient of the correct 
classifications, % 91.0 92.0 93.0 

Amended coefficient of the 
correct classifications, % 99.6 98.9 98.1 

Table 4 
The number of network false responses 

Data sets Neural
network
response

Learning 
pattern training validating testing 

37Cr4 34Cr4 39 15 14 
37Cr4 41Cr4 34 12 12 
38Cr2 46Cr2 8 5 6 
48Si7 56Si7 5 4 3 
42CrMo4 50CrMo4 2 2 1 

4.2. Selection of steel grade by means of many 
output variables 

The other option of neural network response coding has been 
the application of the number of output variables equal to the 

number of steel grades (classes). In that case, the number of 
neurons in the network output layer has been assumed according 
to the number of steel grades. The double conversion has been 
applied, which means that each variable could have one of the two 
nominal values indicating either class affiliation or the lack of a 
certain class affiliation. For neurons in the output layer the values 
of acceptance and rejection level have been established. The value 
of the activation of output layer neuron that is higher than the 
acceptance level has been interpreted as the selection of steel 
grade that meets the predetermined requirements. The activation 
level of the output layer neuron that is lower than the rejection 
level has excluded the steel grade from the accepted selection. 
The presented method of the neuron network response coding 
makes it possible for unclassified cases to arise, that is the ones 
whose value of activation of the output neuron is between the 
acceptance and rejection levels. The change of values of the 
acceptance and rejection levels allows to eliminate unclassified 
cases; however, in the investigated case such action seems 
pointless. The application of the error function in the form of 
mutual entropy and the output layer activation function of the 
softmax type allows to interpret the value of the signal as 
probability of class affiliation. Similar values of signals for 
several output neurons should be regarded as possibility of several 
steel grades selection.  In this case, the result of the artificial 
neuron network calculations is a set of possible outcomes but the 
final decision is to be made by the user. 

As a result of optimization of neuron network parameters a 
network of a hidden layer with 12 neurons has been accepted. The 
training method based on the conjugate gradient algorithm has 
been applied. The training set of 311 training epochs has been 
applied to the neural network. Table 5 presents coefficients of 
correct classifications and amended coefficients  calculated on the 
assumption that ambiguous responses (unclassified cases) can be 
interpreted as different variants of the network correct responses. 
The number of unclassified cases for each data sets have been 
presented in Table 6. All the unclassified cases have been 
analysed by means of hardness curve graphs in function of 
cooling rate against the background of steel hardness ranges 
suggested as possible outcomes. Figures 5-7 show the example of 
predetermined hardness curve in function of time necessary for 
cooling the sample from the austenitising temperature against the 
background of hardness ranges for steel grades: the one assumed 
as a model and the one suggested by the neural network. 
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Fig. 3 Comparison of the predetermined hardness curve and range 
of hardness change accepted as a model (37Cr4) and suggested by 
the neural network (41Cr4) 
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Fig. 4 Comparison of the predetermined hardness curve and range 
of hardness change accepted as a model (34Cr4) and suggested by 
the neural network (37Cr4) 

Table 5 
The values of the coefficient of the correct classifications 

Data sets 

training validating testing 
Coefficient of the correct 
classifications, % 71.6 71.6 69.2 

Amended coefficient of the 
correct classifications, % 99.5 98.7 98.5 

Table 6 
The number of unclassified cases 

Data sets 
Variant 1 Variant 2 

training validating testing 

37Cr4 34Cr4 36 13 14 

37Cr4 41Cr4 82 40 51 

38Cr2 46Cr2 97 50 65 

48Si7 56Si7 8 3 5 

42CrMo4 50CrMo4 4 7 2 
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Fig. 5. Comparison of the predetermined hardness curve and  
hardness ranges for steel grades suggested by the neural 
network: variant 1-42CrMo4; variant 2 – 50CrMo4 
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Fig. 6. Comparison of the predetermined hardness curve and  
hardness ranges for steel grades suggested by the neural 
network: variant 1-34Cr4; variant 2 – 37Cr4 
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Fig. 7. Comparison of the predetermined hardness curve and  
hardness ranges for steel grades suggested by the neural 
network: variant 1-38Cr2; variant 2 – 46Cr2 

5. Summary 
The study presents a design of the advisory system whose task 

is to support the selection of steel grade of predetermined 
hardness in function of cooling rate from the austenitising 
temperature. The artificial neural networks have been applied to 
develop the project. Two options of neural network response 
coding have been used. The first one, by means of one variable 
whose value is equal to the number of classes of possible 
outcomes, and  the other, by means of the number of output 
variables that is equal to the number of classes, where each 
variable can have two nominal values: confirming and rejecting 
value of class affiliation. The application of error function in the 
form of mutual entropy and the output layer activation function of 
the softmax type allows to interpret the value of the output neuron 
activation as probability of class affiliation. There may appear 
such cases in which the function of the artificial neural network 
can be limited to development of a set of possible outcomes and 
the final decision should be made by the user.  

The system presented can be applied to selection of steel 
grade intended for machine parts of predetermined hardness in the 
section of a hardened or normalized element. Differences of 

5.  Summary
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chemical content acceptable within the same steel grade and also 
altering of austenitising conditions are the reason that it is difficult 
to evaluate possible hardness in the section of the element only on 
the basis of steel grade and it must produce great error. It has been 
confirmed by ranges of hardness change in function of cooling 
rate calculated for different steel grades for quenching and 
tempering. As it has been shown in the study, the model of 
relationship between chemical content, the austenitising 
temperature, cooling rate and steel hardness can be applied to 
determine a difference between the predetermined hardness and 
the hardness feasible in the casting of certain chemical content. 
The project of advisory system presented in the study can be 
supplemented with other steel grades. At present research is done 
to work out system supporting selection of steel of predetermined 
content, in the section of a hardened or normalized part, of 
volume fractions of structure elements, such as ferrite, pearlite,  
bainite and martensite. Promising results of preliminary 
calculations have also been obtained for a project of system 
supporting selection of steel of predetermined course in the CCT 
diagrams.
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