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ABSTRACT

Purpose: Article describes kinds and use procedures of mathematical parametric models describing dynamics 
of the systems based on excitation and vibration response signals.
Design/methodology/approach: As a sample of identification of mathematical parametric models and 
estimation their parameters was a composite beam investigated under a white noise excitation force activity.
Findings: Model based identification leads to finitely parameterised models described by differential equations.
Research limitations/implications: Such models provide important features, in comparison with non-parametric 
systems: direct relationship with differential equation or physically significant modal representations used in 
engineering analysis, improved accuracy and frequency resolution, compactness/parsimony of representation.
Practical implications: Ability to provide complete system characterisation by relatively few parameters, 
suitability for analysis, prediction, fault detection and control.
Originality/value: Article is valuable for persons, that are interesting for identification of mathematical 
parametric models and vibration systems.
Keywords:  Computational material science and mechanics; Numerical techniques; Parametric identification; 
Model estimation; Vibration;

1. Introduction 
A parametric identification of vibrating systems is the process 

of finding mathematical and parameterised models for system, 
which is based on measured excitation and/or response signals. In 
normal cases, the excitation is the force, the response signal – the 
vibration displacement, velocity or acceleration.  

A typical experiment of the system identification is being 
described in Fig. 1: 

The measurable excitation force is vector {x(t)}. The 
vibration response vector is {y(t)}. It’s described as forced 
(if x�0), or as free (if x�0) and is corrupted by stochastic zero-
mean noise {e(t)}. The transfer matrix G(s) represents the 

structural dynamics of the examined system, where the variable t 
indicating continuous time and s indicates The Laplace transform 
variable. 

Fig. 1. Typical identification experiments. 

1.  Introduction

The model based identification (also called the parametric 
identification) leads to finitely parameterised models described by 
differential equations. Such models provide important features (in 
comparison with non-parametric systems): 
� The direct relationship with differential equation or physically 

significant modal representations used in engineering 
analysis, 

� Improved accuracy and frequency resolution, 
� Compactness/parsimony of representation, that is the ability 

to provide a complete system characterization with relatively 
few parameters, 

� Their suitability for analysis, prediction, fault detection and 
control.
The prejudice of that model is the increased identification 

complexity and dependence of the results on the assumed model 
form and the estimation criterion. 

2. The algorithm of a parametric 
identification.

The five main elements of parametric identification method 
include: 

1. The data set, 
2. The selected model class, 
3. The estimation criterion, 
4. The model validation procedure, 
5. The modal parameter extraction procedure. 

The general identification procedure, based upon sampled 
signals is outlined in Fig. 2.

The data set consists of two signals. One of them is the 
excitation, the other – the response. The class of the model is a 
selected family of models parameterised in terms of an unknown 
parameter �, witch is the model criterion. In most cases � is the 
least squares criterion. The model validation procedure attempts 
to accept or reject the estimated model. Modal parameter 
extraction refers to the determination of the modal parameters of 
the estimated model.  

A variety of model structures is available to assist in 
modelling a system. The choice of model structure is based upon 
an understanding of the system identification method and on 
insight into the system of undergoing identification. Even then, it 
is often beneficial to test a number of structures to determine the 
best one. 

3. Parametric model structures. 
Th pearametric models describe systems in terms of 

differential equations and transfer functions. They give insights 
into the system of physics and compact model structures. 

Generally, one can describe the system using the following 
equation, which is known as the general-linear polynomial model 
or the general-linear model. 
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u(n) and y(n) are the input and output of the system, e(n) is 
zero-mean noise, G(q-1,�) is the transfer function of the 
deterministic part of the system and H(q-1,�) is the transfer 
function of the stochastic part of the system. 

Fig. 2. The general identification procedure.

The general-linear model structure, shown in Fig. 3, provides 
flexibility for both, the system dynamics and stochastic dynamics. 
However, a nonlinear optimization method computes the 
estimation of the general-linear model. This method requires 
an intensive computation with no guarantee of global 
convergence. 

The simpler models that are subsets of the general linear 
model structures are possible. By setting one or more of A(q), 
B(q), C(q) or D(q) polynomials equal to 1, it is possible to create 
these simpler models such as AR, ARX, ARMAX, Box-Jenkins, 
and output-error structures. Each of these methods has their own 
advantages and disadvantages and is commonly used in real-
world applications.  
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u(n) and y(n) are the input and output of the system, e(n) is 
zero-mean noise, G(q-1,�) is the transfer function of the 
deterministic part of the system and H(q-1,�) is the transfer 
function of the stochastic part of the system. 

Fig. 2. The general identification procedure.

The general-linear model structure, shown in Fig. 3, provides 
flexibility for both, the system dynamics and stochastic dynamics. 
However, a nonlinear optimization method computes the 
estimation of the general-linear model. This method requires 
an intensive computation with no guarantee of global 
convergence. 

The simpler models that are subsets of the general linear 
model structures are possible. By setting one or more of A(q), 
B(q), C(q) or D(q) polynomials equal to 1, it is possible to create 
these simpler models such as AR, ARX, ARMAX, Box-Jenkins, 
and output-error structures. Each of these methods has their own 
advantages and disadvantages and is commonly used in real-
world applications.  

2.  The algorithm of a 
parametric identification

3.  Parametric model structuers
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Fig. 3. The general, linear model structure. 

4. Modelling. 
The introduced experiment depends on the identification of 

system and the estimation of parametric model of the composite 
rectangular beam. (Shown on Fig. 4a). Chemical compositions as 
well as the technology of the production are secret, because from 
these material elements of stabilisers for Greek army jet fighters 
are produced. 

The measuring signals obtained from sensors installed on 
examined beam (Fig. 4b) effect modelling. As a result two signals 
has been obtained, both signals possessing 10240 of samples, 
registered with frequency 100Hz.(Fig. 5). 
„Input” - is the input signal (extorting, white zero-mean noise), 
„Output” - is the output signal, (answer to extortion).  

All the computations are process in Matlab .It is an interactive 
system for numerical computation. A numerical analyst Cleve 
Moler wrote the initial Fortran version of MATLAB in the late 
1970s as a teaching aid. It became popular for both teaching and 
research and evolved into a commercial software package written 
in C. For many years now, MATLAB has been widely used in 
universities and industry. 

a)

b)

c)

d)

Fig. 4.  Exanimate composite beam a) b) View of measuring 
device, b) Sensor installed on examined beam, c) Beam model. 

4.  Modelling
Fig. 5.  Measured signals obtained by sensors, y(t) – output 
signal, u(t) – input signal, samples range – 0-4000. 

For further use the mean values must be removed from the 
signal. After that, the “cleaned” signal is divided on two parts:  
Z1 - samples from range 2000–6000, (used to model estimation),  
Z2 - samples from range 6000–10000, (used to model validation). 

To accelerate modelling additional m-files have been created 
to automate the process of finding the best fit of the estimated 
model.

These files make it possible to find such an order of model, 
that the comparison of the model and the real data gives the best 
conformity results (best fit). 
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ylength

yynorm
fit h ��  (2) 

yh is the modelled output; y is the measured output. Matlab’s 
norm function returns the largest singular value of (yh-y); 
length(y) returns the length of vector y. 

If the data described in the model are ideal, fit would carry out 
100%. It’s not possible in real world. 

It’s very important NOT TO USE the same set of data for the 
estimation and validation. For model estimation we use signal Z1 
(samples 2000-6000), for validation – Z2 (samples 6000-10000). 

The last part of the modelling procedure is the verification. 
The common techniques are the frequency response and Cross 
Correlation Function. 

The frequency response of a linear system is the Fourier 
transform of its impulse response. This description of the system 
gives considerable engineering insight into its properties. The 
relation between input and output is often written: 

)()()()( tvtuzty �� G  (3) 

G is the transfer function and v is the additive disturbance. 
The function. 

)()()()( tvtueGty Ti �� �  (4) 

as a function of (angular) frequency � is then the frequency 
response or frequency function. T is the sampling interval. 

The model frequency response should be a “smooth” copy of 
the frequency taken from base signal. 

You should require of a good model, that the cross correlation 
function between residuals and input does not go significantly 
outside the confidence region. This region corresponds to 
standard deviations. 

A clear peak at lag k shows that the effect from input u(t-k) on 
y(t) is not properly described. A rule of thumb is that a slowly 
varying cross correlation function outside the confidence region is 
an indication of too few poles, while sharper peaks indicate too 
few zeros or wrong delays. 

5. ARX model (Auto Regressive with 
eXogenous excitation)

The ARX model, shown in Fig. 6, is the simplest model 
incorporating the stimulus signal. The estimation of the ARX 
model is the most efficient of the polynomial estimation methods 
because it is the result of solving linear regression equations in 
analytic form. Moreover, the solution is unique. In other words, 
the solution always satisfies the global minimum of the loss 
function. The ARX model therefore is preferable, especially when 
the model order is high. 

Fig. 6. The ARX model structure. 

The structure is thus entirely defined by the three integers na, 
nb, and nk. na is equal to the number of poles and nb-1 is the 
number of zeros, while nk is the pure time delay (the dead time) 
in the system. For a system under sampled-data control, typically 
nk is equal to 1 if there is no dead time. 
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The poles of a system are the roots of the denominator of the 
transfer function G(z), while the zeros are the roots of the 
numerator. In particular the poles have a direct influence on the 
dynamic properties of the system. 

We seek the best model from ranges: 
na = [1:30] 
nb = [1:30] 
nk = 1(for nk>1 all models was unstable). 
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outside the confidence region. This region corresponds to 
standard deviations. 

A clear peak at lag k shows that the effect from input u(t-k) on 
y(t) is not properly described. A rule of thumb is that a slowly 
varying cross correlation function outside the confidence region is 
an indication of too few poles, while sharper peaks indicate too 
few zeros or wrong delays. 

5. ARX model (Auto Regressive with 
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The ARX model, shown in Fig. 6, is the simplest model 
incorporating the stimulus signal. The estimation of the ARX 
model is the most efficient of the polynomial estimation methods 
because it is the result of solving linear regression equations in 
analytic form. Moreover, the solution is unique. In other words, 
the solution always satisfies the global minimum of the loss 
function. The ARX model therefore is preferable, especially when 
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The structure is thus entirely defined by the three integers na, 
nb, and nk. na is equal to the number of poles and nb-1 is the 
number of zeros, while nk is the pure time delay (the dead time) 
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The poles of a system are the roots of the denominator of the 
transfer function G(z), while the zeros are the roots of the 
numerator. In particular the poles have a direct influence on the 
dynamic properties of the system. 

We seek the best model from ranges: 
na = [1:30] 
nb = [1:30] 
nk = 1(for nk>1 all models was unstable). 

5.  ARX model (Auto Regressive 
with eXogenous excitation)
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Fig. 7.  Comparison between measured signals and estimated ARX model: a) fit, b) frequency response, c) cross correlation. 

Syntax of the used function is following:  
[M, F] = h_arx(ze,zv,[na1: na2], [nb1: nb2], nk, x)

M - model order [na nb nk] 
F - fit of the model in comparison with validation 

data (in percentage). If F=100% the model is 
ideal. 

ze - real data used to estimate model 
zv - real data used to validate model 
[na1: na2] - Range of parameter na model ARX (na1>na2) 
[nb1: nb2] - Range of parameter nb model ARX (nb1>nb2) 
nk - Parameter nc model ARX 
x - Additional parameter. If x='pisz' then function 

gives values M and F for all models from 
given range 

Best fit was found by  
na=4, nb=3, nk=1, Fit = 54,99 % 

6. ARMAX model (auto regressive
moving average with exogenous
excitation).

Unlike the ARX model, the ARMAX model structure 
includes disturbance dynamics. ARMAX models are useful when 
you have dominating disturbances that enter early in the process, 
such as at the input. For example, a wind gust affecting an aircraft 
is a dominating disturbance early in the process. The ARMAX 
model has more flexibility in the handling of disturbance 
modeling than the ARX model. 

The ARMAX model in longhand would be:

)(...)1()()1(
...)()(...)1()(

1

11
nctectectenbnktub
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ncnb

na
���������
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 (6) 

We also used h_armax.m file to find the best fit. Listing of 
this file is very similar to h_arx.m file. 

Fig. 8. The ARMAX model structure. 

Syntax of function is following:  
 [M, F] = h_armax(ze,zv,[na1:na2], [nb1:nb2],[nc1:nc2],nk, x) 

The parameters na, nb, and nc are the orders of the ARMAX 
model, and nk is the delay.  

We seek the best model from ranges: 
na = [1:30],  

nb = [1:30],  
nc = [1:30],  
nk = 1,3 (for nk>3 all models was unstable). 

Best fit for modeled data was found by:  
na=4, nb=1, nc=6, nk=1,  Fit = 60,98 %: 

7. BJ Model (Box-Jenkins method) 
The Box-Jenkins (BJ) structure provides a complete model 

with disturbance properties modeled separately from system 
dynamics.  

The parameters nb, nc, nd, and nf are the orders of the Box-
Jenkins model and nk is the delay.  

The Box-Jenkins model is useful when you have 
disturbances that enter late in the process. For example, 
measurement of noise on the output is a late disturbance in 
the process. 

)(
)(
)()(

)(
)()( te

q
qnktu

q
qty

D
C

F
B

���  (7) 

Fig. 9.  Comparison between measured signals and estimated ARMAX model: a) fit, b) frequency response, c) cross correlation..

6.  ARMAX model (auto 
regressive moving average 
eXogenous excitation)
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Fig. 7.  Comparison between measured signals and estimated ARX model: a) fit, b) frequency response, c) cross correlation. 
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We also used h_armax.m file to find the best fit. Listing of 
this file is very similar to h_arx.m file. 

Fig. 8. The ARMAX model structure. 

Syntax of function is following:  
 [M, F] = h_armax(ze,zv,[na1:na2], [nb1:nb2],[nc1:nc2],nk, x) 

The parameters na, nb, and nc are the orders of the ARMAX 
model, and nk is the delay.  

We seek the best model from ranges: 
na = [1:30],  

nb = [1:30],  
nc = [1:30],  
nk = 1,3 (for nk>3 all models was unstable). 

Best fit for modeled data was found by:  
na=4, nb=1, nc=6, nk=1,  Fit = 60,98 %: 

7. BJ Model (Box-Jenkins method) 
The Box-Jenkins (BJ) structure provides a complete model 

with disturbance properties modeled separately from system 
dynamics.  

The parameters nb, nc, nd, and nf are the orders of the Box-
Jenkins model and nk is the delay.  

The Box-Jenkins model is useful when you have 
disturbances that enter late in the process. For example, 
measurement of noise on the output is a late disturbance in 
the process. 
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Fig. 9.  Comparison between measured signals and estimated ARMAX model: a) fit, b) frequency response, c) cross correlation..

7.  BJ Model (Box - Jenkins method)



Research paper120

Journal of Achievements in Materials and Manufacturing Engineering

L.A. Dobrzański, R. Honysz, S. Fassois

Volume 16 Issue 1-2 May-June 2006

Fig. 10. The BJ model structure. 

Specifically: 
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Syntax of function is following: 
[M, F]=h_bj(ze,zv,[nb1:nb2], [nc1:nc2],[nd1:nd2],[nf1:nf2],nk, x) 

We seek the best model from ranges: 
nb = [1:30], 
nc = [1:30],  
nd = [1:30],  
nf = [1:30] 
nk = 1,3 (for nk>3 all models was unstable). 

Best fit for modeled data was found by: 
nb=9, nc=2, nd=6, nf=4, nk=1, Fit = 66,31 % 

8. OE model (Output Error)
The Output-Error (OE) model structure describes the system 

dynamics separately. No parameters are used for modeling the 
disturbance characteristics. 
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Fig. 11.  Comparison between measured signals and estimated Box-Jenkins model: a) fit, b) frequency response, c) cross correlation.

Fig. 12. The OE model structure. 

Specifically 
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Syntax of function is following: 
[M, F]=h_bj(ze,zv,[nb1:nb2],,[nf1:nf2],nk, x) 

The parameters nb, nf, nk, and nf are the orders of the Output 
Error model and nk is the delay. 

We seek the best model from ranges: 
nb = [1:30] 
nf = [1:30] 
nk = 1 (for nk>1 all models was unstable). 

Best fit for modeled data was found by: 
nb=15, nf=10, nk=1, Fit = 43,45 % 

9. AR model (Auto Regressive)
Models operating on input and output data did not give any 

satisfactory results. We reject the input signal, and we build a 
model basing oneself only on given output datas. Last used model 
was AR.  

The AR model structure is a process model used in the 
generation of models where outputs are only dependent on 
previous outputs. No system inputs or disturbances are used in the 
modeling. This is a very simple model that is limited in the class 
of problems it can solve. Strictly speaking this means that the AR 
model structure is the model for a signal, not a system. Time  

Fig. 13.  Comparison between measured signals and estimated Output Error model: a) fit, b) frequency response, c) cross correlation.

8.  OE model (Output Error)
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Fig. 10. The BJ model structure. 
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Syntax of function is following: 
[M, F]=h_bj(ze,zv,[nb1:nb2], [nc1:nc2],[nd1:nd2],[nf1:nf2],nk, x) 

We seek the best model from ranges: 
nb = [1:30], 
nc = [1:30],  
nd = [1:30],  
nf = [1:30] 
nk = 1,3 (for nk>3 all models was unstable). 
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Fig. 11.  Comparison between measured signals and estimated Box-Jenkins model: a) fit, b) frequency response, c) cross correlation.

Fig. 12. The OE model structure. 
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Syntax of function is following: 
[M, F]=h_bj(ze,zv,[nb1:nb2],,[nf1:nf2],nk, x) 
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nb = [1:30] 
nf = [1:30] 
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9. AR model (Auto Regressive)
Models operating on input and output data did not give any 

satisfactory results. We reject the input signal, and we build a 
model basing oneself only on given output datas. Last used model 
was AR.  

The AR model structure is a process model used in the 
generation of models where outputs are only dependent on 
previous outputs. No system inputs or disturbances are used in the 
modeling. This is a very simple model that is limited in the class 
of problems it can solve. Strictly speaking this means that the AR 
model structure is the model for a signal, not a system. Time  

Fig. 13.  Comparison between measured signals and estimated Output Error model: a) fit, b) frequency response, c) cross correlation.

9.  AR model (Auto Regressive)
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series analyses, such as linear prediction coding commonly 
use the AR model. 

Fit of AR model change linearly together with 
parameter A describing the model. Now our aim is not 
finding the best fit, only choosing such order of model, 
so the function of correlation will not exceeded 5% 
threshold with simultaneous maintenance of possibly 
high fit and low model order. 

Fig. 14. The AR model structure. 

We seek the best model from ranges:  
na = [1:60]. 

Best model was found by: 
na=29, Fit = 85,49 % 

10. Modal parameter excitation
Once an estimated model has been validated its structural 

transfer function is used for extraction of modal parameters: 
�nl is the l-th natural frequency, 
�l is corresponding damping factor,  
�l and �l

* are the l-th discrete complex conjugate pair.  
dt is the sampling period. 
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Fig. 15.  Comparison between measured signals and estimated AR model: a) fit, b) frequency response, c) cross correlation.

10. Model parameter Excitation Table 1. 
Comparison of natural frequencies (�n) and modal damping factors (�n) for all models. 

Measured output ARX(4,3,1) ARMAX(4,1,6,1) BJ(9,2,6,4,1) OE(15,10,1) AR(29) 
Fit: 54,99% 60,98% 66,31% 43,45% 85,49% 

�nl[Hz] �l [%] �nl[Hz] �l [%] �nl[Hz] �l [%] �nl[Hz] �l [%] �nl[Hz] �l [%] �nl[Hz] �l [%] 
6,52    6.54 1.0000   6.86 1.0000   
7,73  7,08 1.000         
15,7            
20,07      19.60 1.0000     
23,26            
43,63            
55,16        56.16 0.0043   
65,58        60.56 0.9832   
77,52          78.53 0.0612 
91,56          89.73 0.0612 

101,92            
103,16    102,79 0.0500       
104,61            
109,84            
110,68  110,75 1.0000     110.86 0.2957   
124,7            

132,22            
154,11        159.39 0.2415 157.07 0.0612 
176,7            

179,98            
186,25            
204,43            
235,29        230.64 0.2320 235.61 0.1608 
272,63          277.54 0.1608 
298,4            

309,56    301.04 0.0010   301.73 0.0940   
314,76  314.44 1.0000     314.32 0.0321 314.15 0.1608 
391,21        388.55 0.0001   

11. Conclusions
1. Models operating on input and output signals did not give 

satisfactory results (function of correlation goes outside of the 
admissible range),  

2. Rejection of input data permitted on considerable 
improvement of fit, 

3. Correct function of correlation succeeded to obtain only in 
AR model, 

Use automatized procedures of finding best agreements have 
given considerable shortening of work time. 
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series analyses, such as linear prediction coding commonly 
use the AR model. 

Fit of AR model change linearly together with 
parameter A describing the model. Now our aim is not 
finding the best fit, only choosing such order of model, 
so the function of correlation will not exceeded 5% 
threshold with simultaneous maintenance of possibly 
high fit and low model order. 

Fig. 14. The AR model structure. 

We seek the best model from ranges:  
na = [1:60]. 

Best model was found by: 
na=29, Fit = 85,49 % 

10. Modal parameter excitation
Once an estimated model has been validated its structural 

transfer function is used for extraction of modal parameters: 
�nl is the l-th natural frequency, 
�l is corresponding damping factor,  
�l and �l

* are the l-th discrete complex conjugate pair.  
dt is the sampling period. 
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Fig. 15.  Comparison between measured signals and estimated AR model: a) fit, b) frequency response, c) cross correlation.

Table 1. 
Comparison of natural frequencies (�n) and modal damping factors (�n) for all models. 

Measured output ARX(4,3,1) ARMAX(4,1,6,1) BJ(9,2,6,4,1) OE(15,10,1) AR(29) 
Fit: 54,99% 60,98% 66,31% 43,45% 85,49% 
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55,16        56.16 0.0043   
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101,92            
103,16    102,79 0.0500       
104,61            
109,84            
110,68  110,75 1.0000     110.86 0.2957   
124,7            

132,22            
154,11        159.39 0.2415 157.07 0.0612 
176,7            

179,98            
186,25            
204,43            
235,29        230.64 0.2320 235.61 0.1608 
272,63          277.54 0.1608 
298,4            

309,56    301.04 0.0010   301.73 0.0940   
314,76  314.44 1.0000     314.32 0.0321 314.15 0.1608 
391,21        388.55 0.0001   

11. Conclusions
1. Models operating on input and output signals did not give 

satisfactory results (function of correlation goes outside of the 
admissible range),  

2. Rejection of input data permitted on considerable 
improvement of fit, 

3. Correct function of correlation succeeded to obtain only in 
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