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ABSTRACT
Purpose: The aim of the work was the optimization of injection molded product warpage by using an integrated 
environment.
Design/methodology/approach: The approach implemented took advantages of the Finite Element (FE) 
Analysis to simulate component fabrication and investigate the main causes of defects. A FE model was initially 
designed and then reinforced by integrating Artificial Neural Network to predict main filling and packing results 
and Particle Swarm Approach to optimize injection molding process parameters automatically.
Findings: This research has confirmed that the evaluation of the FE simulation results through the Artificial 
Neural Network system was an efficient method for the assessment of the influence of process parameter 
variation on part manufacturability, suggesting possible adjustments to improve part quality.
Research limitations/implications: Future researches will be addressed to the extension of analysis to large 
thin components and different classes of materials with the aim to improve the proposed approach.
Originality/value: The originality of the work was related to the possibility of analyzing component fabrication 
at the design stage and use results in the manufacturing stage. In this way, design, fabrication and process control 
were strictly links.
Keywords:  Injection Molding; Finite element method; Artificial Neural Network; Particle Swarm Optimization

1. Introduction 
Thermoplastic injection molding is a well-know process for 

manufacturing simple and complex shaped products in short time 
and at low cost. The fabrication cycle consists of three main 
phases, necessary to fill the mould cavity with molten polymer 
(injection step), add material to achieve the final part weight 
(packing step), drop polymer temperature to the ambient 
temperature (cooling phase). Mold opening and part ejection 
complete the process. All these steps are strictly related and 
several factors, such as material characteristics, molding machine 
features, part and mold design, processing parameters, influence 
the quality of final parts in terms of product appearance and 
strength [0]. The warpage and shrinkage of injection molded parts 
were extensively investigated by using numerical and 
experimental techniques. From the literature survey of the last 

years, the main approaches employed to investigate and optimize 
process conditions were the Design of Experiment and the 
Artificial Neural Network. 

Design of Experiment (DOE) is a structured and organized 
method to determine relationships between factors affecting a 
process and output of the process itself. DOE techniques 
statistically quantify indeterminate measurements of factors and 
their interactions by observing forced changes made methodically. 
The main advantages of DOE techniques are the identification of 
the principal factors affecting the part quality and the 
improvement of the optimal solution search by removing factors 
with very low influence. The main limitations of the DOE 
methods are the difficulty to identify the process parameters set 
optimizing multiple objective functions and the choice of 
appropriate parameter ranges in which the relations between 
inputs and response are linear. In addition, historic data, available 
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from previous experimental runs, cannot be included in the 
analysis. The Taguchi orthogonal array and the Response Surface 
are two of the principal DOE approaches applied in analysis of 
injection molding. These approaches employ a rectangular input 
space in each section plane of a multi-dimensional space to avoid 
risky extrapolation and randomized replications executed at each 
test point to assess process sensitivity. The Taguchi method 
optimizes design parameters to minimize variation before 
optimizing design to hit mean target values for output parameters. 
This method was extensively used to identify main factors 
affecting the part warpage and shrinkage on a flat plates [[1],[2]], 
box shaped parts [[3]] and real components [[4]]. One of the main 
outcomes reported from these studies was the identification of the 
packing pressure as the most important factor affecting the part 
quality. Research results also pointed out that the shrinkage of 
crystalline polymers mainly depended by the packing pressure 
while the melt and mould temperatures become more important in 
shrinkage of amorphous polymers. The Response Surface Method 
(RSM) was employed when the problem objective was the 
optimization of the process parameters. RSM was used to develop 
a statistically precise predictive knowledge about part warpage 
and shrinkage by using simple polynomial models between 
injection molding process parameters. The warpage reduction was 
achieved also optimizing filling and packing steps. The studies 
were performed on flat plates [[5]] and real components [[6],[7]]. 

An Artificial Neural Network (ANN) is inspired by the way 
biological nervous systems process information. The important 
element of this approach is the information framework of the 
processing system that encompasses a large number of highly 
interconnected processing elements (neurons) working together to 
solve the assigned problem. An ANN is designed for the specific 
application through a learning process adapting the synaptic 
connections between neurons. The approach processes 
information through a mapping mechanism in which the network 
evolves towards to a steady structure minimizing the errors 
between real and predicted responses on presented input-output 
pattern data. The input space may be non-rectangular and historic 
data can be used. More than one output is normally produced. The 
main advantages of ANN is the creation of relations between 
input and output data for not well known relations and/or too 
complex functions to be represented. In addition, the adaptive 
learning (capability to learn tasks based on the given data for 
training or initial experience) and self-organization (organization 
of the information received during learning time) are two 
important features of this approach useful to speed-up data 
structure creation. The main limitations of ANN are: (i) the 
sensitivity of the quality and type of data and pre-processing 
operations before dare are presented to the learning procedure and 
(ii) the interpretation of the results because rules used to obtain 
them are not completely intelligible. The ANN approach applied 
to injection molding field was used to identify main processing 
parameters affecting product quality of thin parts [[8]], determine 
the initial process parameters for box-and complex-shaped 
products [[9]] and predict the quality of complex-shaped injected 
parts [[10]]. These researches pointed out the potentials of ANN 
in predicting filling and packing conditions of injection molding 
parts without quantitative evaluating the influence of each process 
parameters on the final shrinkage of the part. The optimization 

was normally performed directly from the analysis of the results 
or by using other subsequent methods (e.g. Fuzzy Logic). 

The aim of the present work was the optimization of the 
product warpage by integrating an Artificial Neural Network 
(ANN) predicting main filling and packing results and a Particle 
Swarm Optimization (PSO) to optimize the process parameters 
automatically. The Finite Element simulation and experimental 
validation were also performed on a real industrial component to 
couple with ANN-GA framework. 

2. Particle Swarm Optimization 
Evolutionary computation exploit a set of potential solutions, 

named population, and detect the optimal ones through 
cooperation and competition among the individuals of the 
population. Particle Swarm Optimization (PSO) is one of the 
population-based stochastic optimization technique inspired by 
social behavior of bird flocking [[11]]. PSO shares many 
similarities with evolutionary computation techniques such as 
Genetic Algorithms (GA). A population of random individuals is 
initially generated and these individuals probe the search space 
during their evolution to identify the optimal solution. Compared 
to GA, PSO does not employed evolution operators such as 
crossover and mutation and does not need information about the 
objective function gradient. Other advantages characterized PSO 
such as the easy implementation and the low requirement of 
computational resources. 

In PSO, the individuals, called particles, are collected into a 
swarm and fly through the problem space by following the optima 
particles. Each individual has a memory, remembering the best 
position of the search space it has ever visited. In particular, 
particle remembers the best position among those it has visited, 
referred to as pbest, and the best position by its neighbors [[12]]. 
There are two versions for keeping the neighbors best position, 
namely lbest and gbest. The first (lbest) is related to the best 
position of the particle in the neighbors of the particle itself while 
gbest reefers to the best position recorded by the entire swarm. 
Each individual of the population has an adaptable velocity 
(position change), according to which it moves in the search 
space. Thus, its movement is an aggregated acceleration towards 
its best previously visited position and towards the best individual 
of a topological neighborhood. Compared to GA, the information 
sharing mechanism of PSO is notably different. Chromosomes 
share information and the entire population evolves towards an 
optimal area in compact manner. The evolution of particles, 
guided only by the best solution, tend to be regulated by behavior 
of the neighbors . In the simplest form, the position p and velocity 
v of each particle are represented by the following equations by 
considering lbest rather than gbest as the best position of the 
particle referred to the neighbors: 

11 �� �� nnn vpp  (1) 
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where c1 and c2 represent the acceleration terms and r1 and r2 are 
two random numbers, representing the individuality and sociality 
of one particle with the others. The velocity equation can be 
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written in similar forms to the previous formulation in order to 
improve the converge by adding a weighting factor on previous 
velocity value and/or biasing the c-terms [[13],[14]]. 

3. Proposed Approach 
For complex interactions between process parameters of 

injection molding, analytical studies are possible only for simple 
products. A numerical methodology is very useful to evaluate 
components with complex geometries but it is computational 
expensive if the aim is the optimization of the product 
performances. The objective of the proposed approach was the 
development of an integrated environment for the optimization of 
product warpage by coupling Finite Element and Artificial 
Intelligent approaches. In this way, the Finite Element (FE) 
Method allowed the deep investigation of filling and packing 
conditions on a reduced set of process parameters, the Artificial 
Neural Network enlarged the search space by predicting results on 
points different from those of numerical simulations and the PSO 
was involved in the optimization stage. Fig. 1 shows the flowchart 
of the proposed approach with three layers associated to 
simulation, prediction and optimization. The definition of these 
three layers was important to reduce the computational time. In 
fact, the direct link between the simulation software and PSO 
required a long time before optima were identified. The insertion 
of the prediction layer allowed the decoupling of simulation and 
optimization stages by inserting a ANN as result predictor. 
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Fig. 1: Flowchart 

Analyzing the flowchart in more detail, several sub-stages 
were defined. The CAD model of the product was initially 
imported and converted into a FE mesh. Element dimensions and 
number was carefully defined to achieve reliable results in 
reasonable time. The definition of mesh density was thus very 

crucial. A coarse mesh could behave to convergence solution 
problems and/or inaccurate results. On the contrary, a very fine 
mesh could lead to analysis costs in computing time out of 
proportion respect to obtained results. For this reason, some 
attempts were performed until a good compromise between result 
accuracy and simulation time was achieved. 

Once the FE mesh was set, the solution space was defined. 
Three possible approaches were taken into account. In the first 
approach, a regular solution space equal to that obtained with a 2n

Full Factorial technique was defined. In this way, the influence of 
each process parameter on selected responses was evaluated and 
the solution space was better refined. The disadvantage of this 
approach was the possibility of detecting non-linear relations 
between factors and one single response, obtaining a low 
regression value. The second approach considered an initial 
solution set in which process parameters were randomly 
distributed. The advantage of this approach was the definition of a 
solution space in which regions leading to unfeasible solutions 
were avoided. The limit of this approach was the impossibility of 
evaluating the influence of process parameters on responses. The 
third approach consisted into the fusion of the above approaches, 
inheriting their advantages.  

Numerical simulations were performed on defined solution 
space and main response variables evaluated. Experimental tests 
were also carried out to validate the FE model and tune FE 
parameters. If validation was negative, the simulation process was 
repeated until simulation results were able to predict experimental 
data. The input-output pattern were then extracted and sent to 
ANN. A feed-forward neural network was used to recognize and 
predict these patterns. The solution set was divided into training 
and validation sub-sets. The training data was used for the 
learning process of the network while validation set was used to 
verify if the network carried-out reliable forecasts in points 
different to those belonging to the training sub-set. The learning 
process was completed when Mean-Square Errors between 
existing data and predicted data on training and validation sets 
were below a defined threshold. 

The PSO directly performed computation on ANN data to 
identify the optimal solutions. The particles were associated to the 
process parameters while the fitness function was a combination 
of the response variables. The particle encoding was performed by 
using integer number to respect the problem formulation. In fact, 
response variables had shown a low sensitivity to too small 
variations of the process parameters. The PSO was tuned by 
setting a small number of particles with low level of interactions 
between neighbors. A high particle velocity was initially set in 
order to efficiently explorer the solution space, avoiding local 
mina. 

4. Application to a real component
The proposed approach was applied to a real industrial 

component to verify potentials and limitations. The product, a 
cover of an electric assembly, was characterized by a box-shape 
with internal ribs and was made of Ultramid B3S (un-reinforced 
PA6 material) of BASF Company. Material properties are 
reported in Table 1. 

3.  Proposed Approach

4.  Application to a real 
component 

Fig. 2-A shows the product features. The main product 
dimensions were 45.00·25.50·16.270 mm3 (total volume to be 
filled equal to 7.22·103 mm3).

Table 1.  
Material properties. 

Melt\Solid Densities (g/cm3) 0.92-1.13 
Water Absorption (% ) 9.5 

Linear Mold Shrinkage (cm/cm) 0.01 
Melt Flow (g/10 min) 147 

Min-Max Melt Temperatures (°C) 250-270 
Maximum Shear Stress (MPa) 0.5 

Fig. 2. Product and FE Mesh 

This component was chosen as case study to test the proposed 
approach because two explicit objectives were required to be 
satisfied such as the warpage reduction and a short fabrication 
cycle time. The presence of sections with dissimilar thickness, 
and the need of assembling the electric part inside made the 
satisfaction of the two goals difficult to solve. 

4.1 Finite Element Model 

The products was manufacturing by using a four cavity 
mould. Only one cavity was modeled with the commercial 
software MOLDFLOW MPI version 5.1. The FE mesh consisted 
of about 5,500 element triangles and 2,800 nodes with the fusion 
(double-skin) representation (Fig. 2-B). The mean aspect ration of 
the triangles was equal to 1.7. The feeding system consisted of 
one sprue, main and secondary runners and sub-marine gates. 
Because the symmetrical flow paths occurred, only one cavity and 
a partition of the feeding system were modeled while the other 
mold regions were referenced in the analysis by occurrence 
numbers. Identical flow paths have symmetrical physical 
geometries and identical volumes of plastic flowing through them. 
For this reason, the attribute Occurrence, the value of which was 
equal to 4, was applied to this mesh in order to simplify the 
amount of modeling required for a flow analysis by specifying the 
number of times that a given flow path was repeated. This model 
simplification was also applied to runners and gates but not for 
the sprue that was a common region to all four cavities. 

4.2 Definition of the Solution Space 

The main process parameters chosen for the analysis were the 
mod temperature TM, the polymer molten temperature TI, the 

flow rate Q and the hydraulic packing pressure P. The parameter 
ranges, reported in Table 2, were chosen according to material 
specification suggested from the plastic manufacturer. 

Table 2.  
Process parameter ranges. 

Min Max 
Mold Temperature TM (°C) 40 80 
Melt Temperature TI (°C) 250 270 
Flow Rate Q (103·mm3/s) 10 80 
Packing Pressure P (MPa) 25 40 

The packing and net cooling times were set equal to 6 s and 
10 s respectively. The packing time values was regulated to avoid 
premature (the gate freeze before the part was completely filled) 
and tardily gate freezing (the gate froze before the part causing 
under-packing effect). The net cooling time is the time after the 
pressure phase and before the part is ejected from the mold. The 
net cooling value was chosen in order achieve 80% of the 
complete solidification of the part before ejection. The 
filling/packing switch was equal to 92% by volume filled. 

The solution space consisted of 16 sets created by permuting 
the minimum and maximum values of the process parameters plus 
1 central set with the mean values plus 10 sets randomly 
generated. The entire solution space covered all vertexes of the 
process parameter space and allowed the 24 Full Factorial to be 
performed. The random sets inside the solution space above 
defined allowed the ANN to be efficiently trained. 

4.3 Simulation results and experimental 
validation

The numerical simulations of part filling and packing were 
performed. The main response variables were the average 
volumetric shrinkage VS, the end of fill EF, the maximum shear 
stress at wall SS, the average bulk temperature BT ad the final part 
weight W. SET1=(TM=40°C, TI=250°C, Q=10·103·mm3/s,
P=25MPa) and SET2=(TM=80°C, TI=270°C, Q=80·103·mm3/s,
P=40MPa), containing the maximum and minimum values of the 
process parameters, were chosen to experimentally validate FE 
results.  Table 3 reports response variable results of the two sets, 
where average bulk temperature is substituted from its difference 
with the melt temperature. The high values of �BT and SS (the 
maximum SS allowed for the polymer was 0.50 MPa) of SET1
were justified by the fact that the parameters were too near the 
zone of the incomplete filling (short shot) in the process window. 
On the contrary, a high volumetric shrinkage value was obtained 
with parameters of SET2.

Table 3.  
Simulation Results 

SET1 SET2 
Avg. Volumetric Shrinkage VS (%) 4.47 6.22 

End of Fill EF (s) 5.63 0.52 
Shear Stress SS (MPa) 0.69 0.48 

Avg. Diff. Bulk Temp. �BT (°C) -39.9 1.60 
Final Part Weight W (g) 38.95 38.20 

A B



149

Analysis and modelling

Optimisation of injection moulded parts by using ANN-PSO approach
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conditions on a reduced set of process parameters, the Artificial 
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points different from those of numerical simulations and the PSO 
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The proposed approach was applied to a real industrial 

component to verify potentials and limitations. The product, a 
cover of an electric assembly, was characterized by a box-shape 
with internal ribs and was made of Ultramid B3S (un-reinforced 
PA6 material) of BASF Company. Material properties are 
reported in Table 1. 

Fig. 2-A shows the product features. The main product 
dimensions were 45.00·25.50·16.270 mm3 (total volume to be 
filled equal to 7.22·103 mm3).

Table 1.  
Material properties. 

Melt\Solid Densities (g/cm3) 0.92-1.13 
Water Absorption (% ) 9.5 

Linear Mold Shrinkage (cm/cm) 0.01 
Melt Flow (g/10 min) 147 

Min-Max Melt Temperatures (°C) 250-270 
Maximum Shear Stress (MPa) 0.5 

Fig. 2. Product and FE Mesh 

This component was chosen as case study to test the proposed 
approach because two explicit objectives were required to be 
satisfied such as the warpage reduction and a short fabrication 
cycle time. The presence of sections with dissimilar thickness, 
and the need of assembling the electric part inside made the 
satisfaction of the two goals difficult to solve. 

4.1 Finite Element Model 

The products was manufacturing by using a four cavity 
mould. Only one cavity was modeled with the commercial 
software MOLDFLOW MPI version 5.1. The FE mesh consisted 
of about 5,500 element triangles and 2,800 nodes with the fusion 
(double-skin) representation (Fig. 2-B). The mean aspect ration of 
the triangles was equal to 1.7. The feeding system consisted of 
one sprue, main and secondary runners and sub-marine gates. 
Because the symmetrical flow paths occurred, only one cavity and 
a partition of the feeding system were modeled while the other 
mold regions were referenced in the analysis by occurrence 
numbers. Identical flow paths have symmetrical physical 
geometries and identical volumes of plastic flowing through them. 
For this reason, the attribute Occurrence, the value of which was 
equal to 4, was applied to this mesh in order to simplify the 
amount of modeling required for a flow analysis by specifying the 
number of times that a given flow path was repeated. This model 
simplification was also applied to runners and gates but not for 
the sprue that was a common region to all four cavities. 

4.2 Definition of the Solution Space 

The main process parameters chosen for the analysis were the 
mod temperature TM, the polymer molten temperature TI, the 

flow rate Q and the hydraulic packing pressure P. The parameter 
ranges, reported in Table 2, were chosen according to material 
specification suggested from the plastic manufacturer. 

Table 2.  
Process parameter ranges. 

Min Max 
Mold Temperature TM (°C) 40 80 
Melt Temperature TI (°C) 250 270 
Flow Rate Q (103·mm3/s) 10 80 
Packing Pressure P (MPa) 25 40 

The packing and net cooling times were set equal to 6 s and 
10 s respectively. The packing time values was regulated to avoid 
premature (the gate freeze before the part was completely filled) 
and tardily gate freezing (the gate froze before the part causing 
under-packing effect). The net cooling time is the time after the 
pressure phase and before the part is ejected from the mold. The 
net cooling value was chosen in order achieve 80% of the 
complete solidification of the part before ejection. The 
filling/packing switch was equal to 92% by volume filled. 

The solution space consisted of 16 sets created by permuting 
the minimum and maximum values of the process parameters plus 
1 central set with the mean values plus 10 sets randomly 
generated. The entire solution space covered all vertexes of the 
process parameter space and allowed the 24 Full Factorial to be 
performed. The random sets inside the solution space above 
defined allowed the ANN to be efficiently trained. 

4.3 Simulation results and experimental 
validation

The numerical simulations of part filling and packing were 
performed. The main response variables were the average 
volumetric shrinkage VS, the end of fill EF, the maximum shear 
stress at wall SS, the average bulk temperature BT ad the final part 
weight W. SET1=(TM=40°C, TI=250°C, Q=10·103·mm3/s,
P=25MPa) and SET2=(TM=80°C, TI=270°C, Q=80·103·mm3/s,
P=40MPa), containing the maximum and minimum values of the 
process parameters, were chosen to experimentally validate FE 
results.  Table 3 reports response variable results of the two sets, 
where average bulk temperature is substituted from its difference 
with the melt temperature. The high values of �BT and SS (the 
maximum SS allowed for the polymer was 0.50 MPa) of SET1
were justified by the fact that the parameters were too near the 
zone of the incomplete filling (short shot) in the process window. 
On the contrary, a high volumetric shrinkage value was obtained 
with parameters of SET2.

Table 3.  
Simulation Results 

SET1 SET2 
Avg. Volumetric Shrinkage VS (%) 4.47 6.22 

End of Fill EF (s) 5.63 0.52 
Shear Stress SS (MPa) 0.69 0.48 

Avg. Diff. Bulk Temp. �BT (°C) -39.9 1.60 
Final Part Weight W (g) 38.95 38.20 

A B

4.1.  Finite Element Model

4.2.  Definition of the Solution Space

4.3.  Simulation results and 
experimental validation
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Product fabrication was performed with a DEMAG Concept 
810-370/80 hydraulic injection molding machine. The process 
was stabilized with 10 cycles prior to each run and then 5 
consecutive shots were collected and labeled from each set.  

0 10.5% 
Fig. 3. FE and Experimental Vol. Shrinkage (SET1)

0 10.5% 
Fig. 4. FE and Experimental Vol. Shrinkage (SET2)

Fig. 3 and 4 report the FE predictions and manufactured 
components with process parameters of SET1 and SET2. The 
specimen obtained with SET1 parameters was characterized by a 
low surface finishing because of the high flow rate. However, the 
volumetric shrinkage was low. On the contrary, a high volumetric 
shrinkage occurred for the specimen with SET2 process 
parameters and the surface finishing was fine. A good agreement 
between numerical and experimental results was achieved, 
confirming the capability of the FE model to well substitute the 
experimental fabrication. The validation was also carried-out by 
comparing the predicted and real linear shrinkages of the products 
manufactured with the two process parameter sets. The 
displacements of the numerical model were evaluated by using 
the flow induced residual stresses while the real displacements 
were acquired by using a 3D Coordinate Measuring Machine with 
a Renishaw touch probe. Fig. 5 shows the main dimensions 
measured from both numerical and experimental specimens while 
Fig. 6 reports comparison between numerical (SETxnum) and 
experimental (SETxexp) measurements for the two sets. The 
results were in agreements also for this analysis. 

Fig. 5. Main dimensions for measurements 
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Fig. 6. Num. and exp. measurements (units mm/mm) 

An additional verification was performed by comparing the 
final weight of each manufactured part with that attained with FE 
simulation. The direct measure of specimen weight was 
performed with a KERN EW 220-3 NM precision balance 
immediately after component ejection. This operative condition 
was very important to respect because the water absorption of the 
material was very high (9.5%). The average weight of the 20 
components (4 parts for each shot) per space point was evaluated. 
The mean difference between the numerical and experimental 
weight was about 1-2%. 

4.4 Artificial Neural Network Design 

The significant factors and the coefficient of 
determination R2 of the 24 Full Factorial extracted from the 
entire solution space is reported in Table 4. The 1st and 2nd

order model to response data were evaluated. 

Table 4.  
ANOVA 

Factors R2 - 1st order 
Avg. Volumetric Shrinkage VS TM,Q,TI,P 96%

End of Fill EF Q,P 97%
Shear Stress SS Q,TI 59%

Avg. Diff. Bulk Temp. �BT Q 60%
Final Part Weight W TM,Q,TI,P 96%

The values of R2 of the 1st order model were high VS,
EF and W responses but low for SS and �BT. The R2 of 
these last responses did not greatly incremented with the 
2nd order model. Thus interactions between factors were 
ignored. 

The ANN was designed to create more precise relations 
process and response variables that those of the Full Factorial 
design. The proposed ANN was a supervised multi-layer feed-
forward one with 4 input (process parameters TM, TI, Q and P), 

4.4.  Artificial Neural Network Design

10 hidden and 5 output (response variables VS, EF, SS, �BT and 
W) neurons. The layer transfer functions were the pure-line 
(input-hidden layer) and the saturation-line (hidden-output layer). 
The learning rule was based on the Levenberg-Marquardt 
algorithm while the performance function was the Mean Square 
Error (MSE) minimization of the network errors on the training 
set [[15]]. The learning procedure of the ANN was performed on 
the training set values using an iterative procedure, ending when 
the mean R2 between predicted values and pattern data was 
greater than 95% and the MSE value on the training set was lower 
than 10-5. The validation set was needed to compare the ANN 
response with FE solver results to verify and adjust the ANN 
mapping. Fig. 7 shows the performance MSE of the ANN for the 
training and validation sets. The mean of the R2 values of all 
responses was equal to 98%. The MSE value of the validation set 
remained constant after the 2nd epoch.  
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Fig. 7. ANN Training 

4.5 Optimization with PSO 

The particle was represented by suing a four-dimension vector 
in the form 
p =  [ TM, TI, Q, P ] (3) 
containing the main decision variables. Each particle was a 
candidate solution when it was inside the solution space. The 
initial swarm consisted of 40 randomly initialized particles and 
their velocities belonged the range (-10,+10). The acceleration 
constants c1 and c2 were both equal to +1 while random values r1
and r2 were chosen in the range (0,+5) and converted into integer 
numbers. The maximum number of iterations was equal to 100. 
At each iteration the best fitness of the particle (lbest) and best 
fitness of the swarm (gbest) were recorded. 

The fitness function FIN was the sum of the un-coded 
response variables VS, SS and �BT :

PENBTEFVSFIT ������ 2)exp(  (4) 

In addition, a penalty factor PEN was added to avoid that 
particles went outside the solution space. Its maximum value was 
equal to +5. The choice of this fitness function form was linked to 
the objective of minimizing not only the volumetric shrinkage VS
but also the end of fill EF and the bulk temperature difference 
�BT. An additional constraint was imposed on the maximum 
value of the shear stress of the particle (SS)particle by: 

(SS)particle < SSMAX (5) 
where SSMAX was the maximum shear stress allowed.  

Fig. 8 shows the convergence of the swarm during its 
evolution. The minimum value of the fitness function was attained 
after 75 iterations and remained stable until the maximum number 
of iterations was reached. All solutions were feasible and the 
convergence was very fast in the first 10 iterations. Sub-optimal 
solutions were also obtained the main differences of which were 
the value of �BT. The fitness of the optimal solution was -1.53. 
The values of process parameters (SET) and response variables 
are reported in Table 5. 
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Fig. 8. PSO Fitness vs. Iterations 

Table 5:
Optimal Solution

SET
Mold Temperature TM (°C) 50 
Melt Temperature TI (°C) 250 
Flow Rate Q (103·mm3/s) 73
Packing Pressure P (MPa) 40 

Avg. Volumetric Shrinkage VS (%) 4.78 
End of Fill EF (s) 0.59 

Shear Stress SS (MPa) 0.49 
Avg. Diff. Bulk Temp. �BT (°C) -1.2

Final Part Weight W (g) 38.78 

These values were in good agreement with the numerical 
simulation performed. Fig. 9 shows the comparison between 
volumetric shrinkages of the FE simulation and experimental 
fabrication of the component by using parameters of the optimal 
SET. Some interesting results were pointed-out. The average 
volumetric shrinkage was low and the volumetric shrinkage of the 
entire part was more uniform. In addition, the surface finishing 
was very good and the low value of end of fill EF guaranteed high 
production rate for the component. 

0 10.5% 

Fig. 9. FE and Experimental Vol. Shrinkage (Opt. SET)
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Product fabrication was performed with a DEMAG Concept 
810-370/80 hydraulic injection molding machine. The process 
was stabilized with 10 cycles prior to each run and then 5 
consecutive shots were collected and labeled from each set.  

0 10.5% 
Fig. 3. FE and Experimental Vol. Shrinkage (SET1)

0 10.5% 
Fig. 4. FE and Experimental Vol. Shrinkage (SET2)

Fig. 3 and 4 report the FE predictions and manufactured 
components with process parameters of SET1 and SET2. The 
specimen obtained with SET1 parameters was characterized by a 
low surface finishing because of the high flow rate. However, the 
volumetric shrinkage was low. On the contrary, a high volumetric 
shrinkage occurred for the specimen with SET2 process 
parameters and the surface finishing was fine. A good agreement 
between numerical and experimental results was achieved, 
confirming the capability of the FE model to well substitute the 
experimental fabrication. The validation was also carried-out by 
comparing the predicted and real linear shrinkages of the products 
manufactured with the two process parameter sets. The 
displacements of the numerical model were evaluated by using 
the flow induced residual stresses while the real displacements 
were acquired by using a 3D Coordinate Measuring Machine with 
a Renishaw touch probe. Fig. 5 shows the main dimensions 
measured from both numerical and experimental specimens while 
Fig. 6 reports comparison between numerical (SETxnum) and 
experimental (SETxexp) measurements for the two sets. The 
results were in agreements also for this analysis. 

Fig. 5. Main dimensions for measurements 
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An additional verification was performed by comparing the 
final weight of each manufactured part with that attained with FE 
simulation. The direct measure of specimen weight was 
performed with a KERN EW 220-3 NM precision balance 
immediately after component ejection. This operative condition 
was very important to respect because the water absorption of the 
material was very high (9.5%). The average weight of the 20 
components (4 parts for each shot) per space point was evaluated. 
The mean difference between the numerical and experimental 
weight was about 1-2%. 

4.4 Artificial Neural Network Design 

The significant factors and the coefficient of 
determination R2 of the 24 Full Factorial extracted from the 
entire solution space is reported in Table 4. The 1st and 2nd

order model to response data were evaluated. 

Table 4.  
ANOVA 

Factors R2 - 1st order 
Avg. Volumetric Shrinkage VS TM,Q,TI,P 96%

End of Fill EF Q,P 97%
Shear Stress SS Q,TI 59%

Avg. Diff. Bulk Temp. �BT Q 60%
Final Part Weight W TM,Q,TI,P 96%

The values of R2 of the 1st order model were high VS,
EF and W responses but low for SS and �BT. The R2 of 
these last responses did not greatly incremented with the 
2nd order model. Thus interactions between factors were 
ignored. 

The ANN was designed to create more precise relations 
process and response variables that those of the Full Factorial 
design. The proposed ANN was a supervised multi-layer feed-
forward one with 4 input (process parameters TM, TI, Q and P), 

10 hidden and 5 output (response variables VS, EF, SS, �BT and 
W) neurons. The layer transfer functions were the pure-line 
(input-hidden layer) and the saturation-line (hidden-output layer). 
The learning rule was based on the Levenberg-Marquardt 
algorithm while the performance function was the Mean Square 
Error (MSE) minimization of the network errors on the training 
set [[15]]. The learning procedure of the ANN was performed on 
the training set values using an iterative procedure, ending when 
the mean R2 between predicted values and pattern data was 
greater than 95% and the MSE value on the training set was lower 
than 10-5. The validation set was needed to compare the ANN 
response with FE solver results to verify and adjust the ANN 
mapping. Fig. 7 shows the performance MSE of the ANN for the 
training and validation sets. The mean of the R2 values of all 
responses was equal to 98%. The MSE value of the validation set 
remained constant after the 2nd epoch.  
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4.5 Optimization with PSO 

The particle was represented by suing a four-dimension vector 
in the form 
p =  [ TM, TI, Q, P ] (3) 
containing the main decision variables. Each particle was a 
candidate solution when it was inside the solution space. The 
initial swarm consisted of 40 randomly initialized particles and 
their velocities belonged the range (-10,+10). The acceleration 
constants c1 and c2 were both equal to +1 while random values r1
and r2 were chosen in the range (0,+5) and converted into integer 
numbers. The maximum number of iterations was equal to 100. 
At each iteration the best fitness of the particle (lbest) and best 
fitness of the swarm (gbest) were recorded. 

The fitness function FIN was the sum of the un-coded 
response variables VS, SS and �BT :

PENBTEFVSFIT ������ 2)exp(  (4) 

In addition, a penalty factor PEN was added to avoid that 
particles went outside the solution space. Its maximum value was 
equal to +5. The choice of this fitness function form was linked to 
the objective of minimizing not only the volumetric shrinkage VS
but also the end of fill EF and the bulk temperature difference 
�BT. An additional constraint was imposed on the maximum 
value of the shear stress of the particle (SS)particle by: 

(SS)particle < SSMAX (5) 
where SSMAX was the maximum shear stress allowed.  

Fig. 8 shows the convergence of the swarm during its 
evolution. The minimum value of the fitness function was attained 
after 75 iterations and remained stable until the maximum number 
of iterations was reached. All solutions were feasible and the 
convergence was very fast in the first 10 iterations. Sub-optimal 
solutions were also obtained the main differences of which were 
the value of �BT. The fitness of the optimal solution was -1.53. 
The values of process parameters (SET) and response variables 
are reported in Table 5. 
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Table 5:
Optimal Solution

SET
Mold Temperature TM (°C) 50 
Melt Temperature TI (°C) 250 
Flow Rate Q (103·mm3/s) 73
Packing Pressure P (MPa) 40 

Avg. Volumetric Shrinkage VS (%) 4.78 
End of Fill EF (s) 0.59 

Shear Stress SS (MPa) 0.49 
Avg. Diff. Bulk Temp. �BT (°C) -1.2

Final Part Weight W (g) 38.78 

These values were in good agreement with the numerical 
simulation performed. Fig. 9 shows the comparison between 
volumetric shrinkages of the FE simulation and experimental 
fabrication of the component by using parameters of the optimal 
SET. Some interesting results were pointed-out. The average 
volumetric shrinkage was low and the volumetric shrinkage of the 
entire part was more uniform. In addition, the surface finishing 
was very good and the low value of end of fill EF guaranteed high 
production rate for the component. 
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5. Conclusions 
This research has confirmed the efficiency of the integration 

between Finite Element and Artificial Intelligent methodologies 
to identify optimal parameters for the injection molding process. 
The evaluation of the FE simulation results through the Artificial 
Neural Network system was an efficient method for the 
assessment of the influence of process parameter variation on part 
manufacturability, suggesting possible adjustments to improve 
part quality. The proposed approach has operated on the variables 
of the injection molding phases in a very simple way, predicting 
the part quality. The proposed methodology has pointed out the 
potential of Particle Swam Optimization coupled to Artificial 
Neural Network in the optimization of the process parameters of 
the thermoplastic injection molding. The main advantages have 
been the reduction of volumetric shrinkage and filling of the part, 
with the possibility to automate optimization task. The results 
were confirmed from Finite Elements  simulations and real 
fabrication of the investigated component. 

Future researches will be addressed to the extension of 
analysis to large thin components and different classes of 
materials with the aim to improve the proposed approach. The 
method will be implemented by considering other variables, 
related to machine characteristics and/or working conditions. The 
Artificial Intelligence system will be improved to evaluate 
historical data, updating the training set with new experimental 
data and knowledge. 
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