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ABSTRACT
Purpose: The purpose of this paper is optimization of the weight of compound cylinder for a specific pressure. 
The variables are shrinkage radius and shrinkage tolerance.
Design/methodology/approach: SEQ technique for optimization, the finite element code, ANSYS for 
numerical simulation are employed to predict the optimized conditions. The results are verified by testing a 
number of closed end cylinders with various geometries, materials and internal pressures.
Findings: The weight of a compound cylinder could reduce by 60% with respect to a single steel cylinder. The 
reduction is more significant at higher working pressures. While the reduction of weight is negligible for  k<2.5, 
it increases markedly for 2.5<k<5.5. The stress at the internal radii of the outer and inner cylinders become 
equal to the yield stresses of the materials used for compound cylinders. The experimental results showed higher 
bursting pressure for optimized cylinders
Research limitations/implications: The research must be done for non-linear material models and for multiple 
compound cylinders
Practical implications: The results can be used for high pressure vessels such as artillery tubes,  gun barrels 
and son on.
Originality/value: The numerical results indicated that for an optimum condition, the stress at the internal 
radii of the outer and inner cylinders become equal to the yield stresses of the materials used for compound 
cylinders.
Keywords:  Numerical techniques; Compound cylinder; Optimisation; Finite element method

1. Introduction 
Due to the ever-increasing industrial demand for 

axisymmetric pressure vessels which have had wide applications 
in chemical, nuclear, fluid transmitting plants, power plants, gas 
storages [1,2] and military equipments, the attention of designers 
has been concentrated on this particular branch of engineering. On 
the other hand, the increasingly scarcity of materials and higher 
costs have led researchers not to confine themselves to the 
customary elastic regime but attracted their attention to the 
elastic-plastic along with optimization approach which offer more 
efficient use of materials.  

Basically there are two basic different elastic-plastic 

techniques to increase the pressure capacity of thick-walled 
cylinders. In the first, the cylinder is subjected to internal pressure 
so that its wall becomes partially plastic. The pressure is then 
released and the resulting residual stresses increase the pressure 
capacity of the cylinder in the next loading stage. This procedure 
is called 'autofrettage' [3,4]. The analysis of residual stresses and 
deformation in an autofrettaged thick-walled cylinder has been 
given by Chen [5] and Franklin and Morrison [6]. In the second 
technique, two or more cylinders are shrunk into each other with 
different diametral interferences to form a compound cylinder. 
The shrinkage produces a residual stress distribution within the 
walls of the cylinders, which improves the cylinder behavior 
against the working pressure [3].  

1.  Introduction
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In the second technique which is investigated in this work, 
two parameters are very important and must be selected carefully. 
These are: the shrinkage radius, c, and the diametral interference, 
� . Suppose that two cylinders are shrunk together. The inner and 
outer radii are ir a�  and or c� , for  the internal cylinder and 

ir c� and or b�  for  the external cylinder, respectively. c is 
called the shrinkage radius.  

The stress distribution across the wall of a cylinder is shown 
in figure 1. As the figure indicates, hoop and radial stresses 
decrease in a non-linear fashion from the inner surface toward the 
outer surface of the cylinder.  

Fig. 1. Stress distribution for a cylinder under internal pressure 

Dimensions and material of the cylinder   are usually designed 
to tolerate the stresses which occur in the inner surface of the 
cylinder. On the other hand, as figure 1 indicates, the stresses 
reduce sharply towards the outer surface. This implies that the 
cylinder can partially be replaced by a lower strength and 
preferably lighter material to reduce the overall weight of the 
cylinder. For example, a steel cylinder can be partially replaced 
by aluminum. This necessitates that two cylinders are shrunk into 
each other forming a compound cylinder. However, as a result of 
shrinking, stress redistribution may occur across the wall of the 
compound cylinder. The stress redistribution is strongly 
influenced by shrinking radius (the outer radius of the inner 
cylinder and the inner radius of the outer cylinder) and diametral 
interference (shrink fit). The main objective of this work is to 
optimize the values of these two parameters so that the minimum 
weight for the compound cylinder is achieved.  

Majzoobi et al [7] have shown that the best shrinkage radius 
can be obtained for k=2.2, when both the internal radii of the 
compound cylinder experience the same level of von-Mises 
equivalent stress. This can be predicted from the variation of 
maximum von-Mises stress versus shrinkage radius using a finite 
element code such as ANSYS without resorting to expensive and 
time-consuming experiments. They also have shown that the ideal 
diametral interference is obtained when the pressure produced by 
shrinking on the mating cylinder surfaces attains the value of 
pressure limit Py1. Therefore, having known the value of Py1,
diametral interference can be estimated.  

In the present work, the optimization techniques, numerical 
simulation and experiments are employed to predict the optimized 
conditions of a compound cylinder for a specific working 
pressure. SEQ technique is used for optimization purposes. The 
finite element code, ANSYS is employed for numerical 
simulations and finally, the results are verified by testing a 
number of closed end cylinders with various geometries, materials 
and internal pressures. 

2- Analytical relations 

2-1 Single cylinder 

As stated earlier, an elasto-plastic behavior has been 
designated in this work. The model, shown in figure 2 is 
described as follows: 

p
y E� � �� �  (1) 

In which �  is the effective stress, y�  is the initial yield 

stress, pE  is slope of the strain hardening segment of stress-
strain curve, and �  is the effective strain.

Fig. 2. Bi-linear stress-strain curve 

Two pressure limits, 1yP  and 2yP  are considered to be of 

importance in study of pressurized cylinders. 1yP  is the pressure 
required at the onset of yielding which occurs at the inner surface 
of the cylinder. The magnitude of 1yP  based on von-Mises yield 
criterion is [3]: 
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In which k is the ratio of outer to inner radii of the cylinder, 
k=b/a. The pressure 2yP is sufficient to bring the outer surface of 
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the cylinder to yielding. For an elastic perfectly plastic material, 
and according to Tresca yield criterion,  2yP  is [3]: 

2 ( )y yP Ln k��  (4) 

When the pressure lies between 1yP  and 2yP , the wall of 
cylinder becomes partially plastic (see figure 3). In this case, the 
distribution of radial and hoop stresses within the elastic region 
and plastic core can be described as follow: 

Fig. 3. Elasto-plastic regions in the wall of a single cylinder 

For elastic perfectly plastic material: 

In elastic region, a r c� � , for an external pressure 0P  and an 

internal pressure iP  :
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For elastic-plastic material with linear strain hardening: 

In plastic region, c r b� � , for an internal pressure iP :
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If elasto-plastic boundary reaches the outer surface of the 
cylinder, i.e. the wall of cylinder becomes fully plastic (c=b), then 
the relations 7 & 8 reduce to: 
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2-2 Compound cylinder 

When two cylinders are shrunk together, a pressure, tP , is 
produced at the contact surface of cylinders. This pressure for an 
elastic shrinkage is [3]: 
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In which � is diametral interference and c is the shrinkage 
radius. Subscripts ‘1’ and ‘2’ correspond to the inner and outer 
cylinders, respectively. Also, when the compound cylinder is 
subjected to a working pressure, a reacting pressure is developed at 
the contact surface of the mating cylinders and is given by [8,9]: 
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These two systems of pressures act as external pressures for 
the inner cylinder and as internal pressures for the outer cylinder. 
Therefore, the stresses due to the working pressure and the 
contact pressure are superimposed to give the overall stress 
distribution across the wall of compound cylinder.  

Generally, when two cylinders are shrunk together, the wall of 
both internal and external cylinders becomes partially plastic. 
Therefore, the relations of stress distribution across the wall of 
cylinders for elastic region and plastic core are introduced in this 
section. The inner cylinder is affected by two pressure systems: 

,      i w o c tP P P P P� � �  (13) 

In which wP is the working pressure, cP  is the pressure 
developed due to the shrinkage of the cylinders, and tP is the 
reacting pressure at the contact surfaces of the cylinders due to the 
working pressure. The outer cylinder undergoes the following 
systems of pressure: 

0,      o i c tP P P P� � �  (14) 

Now, each stress component in compound cylinder can be 
expressed as follows: 
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2.  Analytical relations

2.1.  Single cylinder
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� . Suppose that two cylinders are shrunk together. The inner and 
outer radii are ir a�  and or c� , for  the internal cylinder and 

ir c� and or b�  for  the external cylinder, respectively. c is 
called the shrinkage radius.  

The stress distribution across the wall of a cylinder is shown 
in figure 1. As the figure indicates, hoop and radial stresses 
decrease in a non-linear fashion from the inner surface toward the 
outer surface of the cylinder.  

Fig. 1. Stress distribution for a cylinder under internal pressure 

Dimensions and material of the cylinder   are usually designed 
to tolerate the stresses which occur in the inner surface of the 
cylinder. On the other hand, as figure 1 indicates, the stresses 
reduce sharply towards the outer surface. This implies that the 
cylinder can partially be replaced by a lower strength and 
preferably lighter material to reduce the overall weight of the 
cylinder. For example, a steel cylinder can be partially replaced 
by aluminum. This necessitates that two cylinders are shrunk into 
each other forming a compound cylinder. However, as a result of 
shrinking, stress redistribution may occur across the wall of the 
compound cylinder. The stress redistribution is strongly 
influenced by shrinking radius (the outer radius of the inner 
cylinder and the inner radius of the outer cylinder) and diametral 
interference (shrink fit). The main objective of this work is to 
optimize the values of these two parameters so that the minimum 
weight for the compound cylinder is achieved.  
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can be obtained for k=2.2, when both the internal radii of the 
compound cylinder experience the same level of von-Mises 
equivalent stress. This can be predicted from the variation of 
maximum von-Mises stress versus shrinkage radius using a finite 
element code such as ANSYS without resorting to expensive and 
time-consuming experiments. They also have shown that the ideal 
diametral interference is obtained when the pressure produced by 
shrinking on the mating cylinder surfaces attains the value of 
pressure limit Py1. Therefore, having known the value of Py1,
diametral interference can be estimated.  

In the present work, the optimization techniques, numerical 
simulation and experiments are employed to predict the optimized 
conditions of a compound cylinder for a specific working 
pressure. SEQ technique is used for optimization purposes. The 
finite element code, ANSYS is employed for numerical 
simulations and finally, the results are verified by testing a 
number of closed end cylinders with various geometries, materials 
and internal pressures. 

2- Analytical relations 

2-1 Single cylinder 

As stated earlier, an elasto-plastic behavior has been 
designated in this work. The model, shown in figure 2 is 
described as follows: 
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In which �  is the effective stress, y�  is the initial yield 

stress, pE  is slope of the strain hardening segment of stress-
strain curve, and �  is the effective strain.

Fig. 2. Bi-linear stress-strain curve 

Two pressure limits, 1yP  and 2yP  are considered to be of 

importance in study of pressurized cylinders. 1yP  is the pressure 
required at the onset of yielding which occurs at the inner surface 
of the cylinder. The magnitude of 1yP  based on von-Mises yield 
criterion is [3]: 
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the cylinder to yielding. For an elastic perfectly plastic material, 
and according to Tresca yield criterion,  2yP  is [3]: 

2 ( )y yP Ln k��  (4) 

When the pressure lies between 1yP  and 2yP , the wall of 
cylinder becomes partially plastic (see figure 3). In this case, the 
distribution of radial and hoop stresses within the elastic region 
and plastic core can be described as follow: 

Fig. 3. Elasto-plastic regions in the wall of a single cylinder 

For elastic perfectly plastic material: 

In elastic region, a r c� � , for an external pressure 0P  and an 

internal pressure iP  :
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For elastic-plastic material with linear strain hardening: 

In plastic region, c r b� � , for an internal pressure iP :
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If elasto-plastic boundary reaches the outer surface of the 
cylinder, i.e. the wall of cylinder becomes fully plastic (c=b), then 
the relations 7 & 8 reduce to: 
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2-2 Compound cylinder 

When two cylinders are shrunk together, a pressure, tP , is 
produced at the contact surface of cylinders. This pressure for an 
elastic shrinkage is [3]: 
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In which � is diametral interference and c is the shrinkage 
radius. Subscripts ‘1’ and ‘2’ correspond to the inner and outer 
cylinders, respectively. Also, when the compound cylinder is 
subjected to a working pressure, a reacting pressure is developed at 
the contact surface of the mating cylinders and is given by [8,9]: 
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These two systems of pressures act as external pressures for 
the inner cylinder and as internal pressures for the outer cylinder. 
Therefore, the stresses due to the working pressure and the 
contact pressure are superimposed to give the overall stress 
distribution across the wall of compound cylinder.  

Generally, when two cylinders are shrunk together, the wall of 
both internal and external cylinders becomes partially plastic. 
Therefore, the relations of stress distribution across the wall of 
cylinders for elastic region and plastic core are introduced in this 
section. The inner cylinder is affected by two pressure systems: 
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working pressure. The outer cylinder undergoes the following 
systems of pressure: 
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In which � �  is the stress due to the working pressure and � ��
is the stress induced by the contact pressures cP and tP . These 
two stresses can be calculated using equations 5 and 6. With the 
above considerations, the stress distribution in the wall of 
compound cylinder can be expressed as follow [8,9]: 
For the inner cylinder: 
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For the outer cylinder: 
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When the mating cylinders in a compound cylinder become 
fully plastic, the stresses can be evaluated from the relations given 
below [10 & 11]. 
For the inner cylinder: 
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For the outer cylinder: 
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According to Tresca yield criterion, the equivalent stress eq�
can be defined as: 

eq r�� � �� �  (24) 

If the cylinder is intended to remain elastic throughout the 
loading process of the cylinder, then the equivalent stress should 
not exceed the yield stress of the material, i.e.: 
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Radial displacement across the wall of the cylinder is obtained 
from the relation [7]: 
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3.  Optimization problem definition 

In the optimization problem, the variables vector is defined 
as: 
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In which 1x a� is the inner radius of the internal cylinder, 

2x c�   is the shrinkage radius (the outer radius of the inner 
cylinder or the inner radius of the external cylinder), 3x b� is the 
outer radius of the external cylinder and finally, 4x � �  is the 
diametral interference.  The objective function, ( )f x , is the 
weight of compound cylinder. The constraints of the problem are 
defined as follow: 
1-

1
1 1g (X) 0eq yr x

� �
�

� � � . This implies that equivalent stress in 

the inner radius of the internal cylinder should not exceed the 
yield stress, 1y� .

2- 2 22
g (X) 0eq yr x

� �
�

� � � . This implies that equivalent stress 

in the inner radius of the external cylinder should not exceed the 
yield stress, 2y� .

3- 3 1
g (X) 0r ar x

u u
�

� � � . This is an optional constraint implying 
that the radial displacement at the inner radius of compound 
cylinder must remain less than a specific value, au .
4- 1x and 2x  have always to be less than 2x and 3x ,
respectively. 
5- 1x  and 3x , i.e. the inner and outer radii of compound cylinder,  
are forced to remain within the range 1 2a x a� � .

The optimization problem can be summarized as follows:  
Minimize:  � � � �2 2 2 2

1 2 1 2 3 2( )f x x x x x� � � �� � � � � � � �  Subject to: 

1 1 2 3 4 11
g (x ,x ,x ,x ) 0eq yr x

� �
�

� � �

2 1 2 3 4 22
g (x ,x ,x ,x ) 0eq yr x

� �
�

� � �

3 1 2 3 4 1
g (x ,x ,x ,x ) 0r ar x

u u
�

� � �

4 1 2 3 4 1 1g (x ,x ,x ,x ) 0a x� � �

5 1 2 3 4 1 2g (x ,x ,x ,x ) 0x x� � �

6 1 2 3 4 2 3g (x ,x ,x ,x ) 0x x� � �

7 1 2 3 4 3 2g (x ,x ,x ,x ) 0x a� � �

Where 1� and 2�  are the specific weights of the inner and 
outer cylinders, respectively.  

SQP technique [10,11] was employed for optimization 
process which was performed using MATLAB software. 

For elaso-plastic optimization, the constraints 1 and 2 must be 
redefined as follow: 

1
1 1g (X) 0eq yr x

� ��
�

� � �

2 22
g (X) 0eq yr x

� ��
�

� � �

In which �  and �  are greater than 1 and must be provided by 
the user. 

4- Material and specimens 
Two materials, aluminum and steel were used in this 

investigation. The stress-strain curves of the materials were 
obtained from a number of tensile tests using the universal testing  
machine, Instron. The stress-strain curves for aluminum and steel 
alloys are shown in figures 4 and 5, respectively. The material’s 
properties obtained from the figures are summarized in Table 1.  
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As the figures suggest, the non-linear portions of the curves 
have been fitted with a linear approximation the slope of which, 

pE , is given in Table 1.    
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In which � �  is the stress due to the working pressure and � ��
is the stress induced by the contact pressures cP and tP . These 
two stresses can be calculated using equations 5 and 6. With the 
above considerations, the stress distribution in the wall of 
compound cylinder can be expressed as follow [8,9]: 
For the inner cylinder: 
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For the outer cylinder: 
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When the mating cylinders in a compound cylinder become 
fully plastic, the stresses can be evaluated from the relations given 
below [10 & 11]. 
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For the outer cylinder: 
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According to Tresca yield criterion, the equivalent stress eq�
can be defined as: 

eq r�� � �� �  (24) 

If the cylinder is intended to remain elastic throughout the 
loading process of the cylinder, then the equivalent stress should 
not exceed the yield stress of the material, i.e.: 

eq r y�� � � �� � �  (25) 

Radial displacement across the wall of the cylinder is obtained 
from the relation [7]: 
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3.  Optimization problem definition 

In the optimization problem, the variables vector is defined 
as: 

� � � �1 2 3 4
TX x x x x�

In which 1x a� is the inner radius of the internal cylinder, 

2x c�   is the shrinkage radius (the outer radius of the inner 
cylinder or the inner radius of the external cylinder), 3x b� is the 
outer radius of the external cylinder and finally, 4x � �  is the 
diametral interference.  The objective function, ( )f x , is the 
weight of compound cylinder. The constraints of the problem are 
defined as follow: 
1-

1
1 1g (X) 0eq yr x

� �
�

� � � . This implies that equivalent stress in 

the inner radius of the internal cylinder should not exceed the 
yield stress, 1y� .

2- 2 22
g (X) 0eq yr x

� �
�

� � � . This implies that equivalent stress 

in the inner radius of the external cylinder should not exceed the 
yield stress, 2y� .

3- 3 1
g (X) 0r ar x

u u
�

� � � . This is an optional constraint implying 
that the radial displacement at the inner radius of compound 
cylinder must remain less than a specific value, au .
4- 1x and 2x  have always to be less than 2x and 3x ,
respectively. 
5- 1x  and 3x , i.e. the inner and outer radii of compound cylinder,  
are forced to remain within the range 1 2a x a� � .

The optimization problem can be summarized as follows:  
Minimize:  � � � �2 2 2 2

1 2 1 2 3 2( )f x x x x x� � � �� � � � � � � �  Subject to: 

1 1 2 3 4 11
g (x ,x ,x ,x ) 0eq yr x

� �
�

� � �

2 1 2 3 4 22
g (x ,x ,x ,x ) 0eq yr x

� �
�

� � �

3 1 2 3 4 1
g (x ,x ,x ,x ) 0r ar x

u u
�

� � �

4 1 2 3 4 1 1g (x ,x ,x ,x ) 0a x� � �

5 1 2 3 4 1 2g (x ,x ,x ,x ) 0x x� � �

6 1 2 3 4 2 3g (x ,x ,x ,x ) 0x x� � �

7 1 2 3 4 3 2g (x ,x ,x ,x ) 0x a� � �

Where 1� and 2�  are the specific weights of the inner and 
outer cylinders, respectively.  

SQP technique [10,11] was employed for optimization 
process which was performed using MATLAB software. 

For elaso-plastic optimization, the constraints 1 and 2 must be 
redefined as follow: 

1
1 1g (X) 0eq yr x
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2 22
g (X) 0eq yr x

� ��
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� � �

In which �  and �  are greater than 1 and must be provided by 
the user. 

4- Material and specimens 
Two materials, aluminum and steel were used in this 

investigation. The stress-strain curves of the materials were 
obtained from a number of tensile tests using the universal testing  
machine, Instron. The stress-strain curves for aluminum and steel 
alloys are shown in figures 4 and 5, respectively. The material’s 
properties obtained from the figures are summarized in Table 1.  
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As the figures suggest, the non-linear portions of the curves 
have been fitted with a linear approximation the slope of which, 

pE , is given in Table 1.    
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Figure 6 illustrates the shape of the specimens tested in this 
work. The shapes of specimens were adopted from the work of 
Manning [12 & 13]. Dimensions of the specimens were the same 
as those obtained from the optimization of the compound 
cylinders. However, the gauge length of the cylinders was 150 
mm and remained constant for all specimens. 

Fig. 6. The external and internal cylinders before testing and one 
specimen after bursting 

5- Optimization results 

5-1 single-metal compound cylinder 
In this section, the two mating cylinders are assumed to be 

made of the same material which is either steel or aluminum. The 
optimization is performed using the optimizing problem defined 
in previous section. Having known the value of the outer radius 
(or the inner radius) of the compound cylinder, the other 
variables, 1x a� (or 3x b� ), 2x c�  and 4x � �  are calculated. 
The results for various working pressures are given in Table 2 for 
aluminum cylinders and in Table 3 for steel cylinders.  

The results are also graphically shown in figures 7 & 8  for 
aluminum and steel cylinders, respectively. It can be deduced 
from the figures that, as the working pressure increases, k=a/b 
decreases and diametral interference, �  increases.  

Table 2 
Optimum values for aluminum compound cylinder (a=0.01m) 

Pi
(Mpa) b(m) k c(m) � �mm� c/b W

(kg/m)
30 0.0144 1.44 0.012 0.0043 0.833 0.91 
35 0.0154 1.54 0.0124 0.0053 0.805 1.16 
40 0.0166 1.66 0.0129 0.0065 0.777 1.49 
45 0.018 1.80 0.0134 0.0077 0.744 1.90 
50 0.0197 1.97 0.014 0.0091 0.711 2.44 
55 0.0218 2.18 0.0145 0.0106 0.665 3.18 
56 0.022 2.20 0.0148 0.0110 0.673 3.26 

Table 3 
Optimum values for steel compound cylinder (a=0.01m)  

Pi 
(Mpa) b(m) k c(m) ��mm� c/b W

(kg/m)
250 0.0148 1.48 0.0121 0.0125 0.818 2.94 
300 0.0162 1.63 0.0128 0.0169 0.788 4.05 
350 0.018 1.80 0.0134 0.0208 0.744 5.52 
400 0.0202 2.02 0.0141 0.0253 0.698 7.60 
433 0.022 2.20 0.0148 0.0296 0.673 9.47 
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5-2 Bi-metal compound cylinders 

The optimization of bi-metal compound cylinders is the main 
objective in this work. Again, having assumed a value for outer 
radius of cylinder, the other variables are obtained using the 
optimizing problem defined in section 4. Some typical results are 
given in Table 4 and graphically shown in figure 9. 

Table 4 
Optimum values for aluminum-steel compound cylinder  

b=0.016

Pi (Mpa) a(m) k c(m) � �mm� c/b Weight
150 0.0126 1.27 0.0142 0.0104 0.888 2.40 
160 0.0123 1.30 0.0141 0.0108 0.881 2.58 
170 0.0121 1.32 0.0139 0.0114 0.869 2.70 
180 0.0119 1.34 0.0138 0.0120 0.863 2.82 
190 0.0117 1.37 0.0137 0.0127 0.856 2.94 

b=0.019
Pi 

(Mpa) a(m) k c(m) � mm� c/b Weight

150 0.0149 1.28 0.0168 0.0121 0.884 3.43 
160 0.0147 1.29 0.0167 0.0131 0.879 3.57 
170 0.0144 1.32 0.0165 0.0136 0.868 3.79 
180 0.0141 1.35 0.0164 0.0142 0.863 4.00 
190 0.0138 1.38 0.0162 0.0147 0.853 4.21 

b=0.022
Pi 

(Mpa) a(m) k c(m) � �mm� c/b Weight

150 0.0173 1.27 0.0195 0.0142 0.886 4.56 
160 0.017 1.29 0.0193 0.0150 0.877 4.81 
170 0.0167 1.32 0.0191 0.0158 0.868 5.06 
180 0.0163 1.35 0.019 0.0164 0.864 5.38 
190 0.016 1.38 0.0188 0.0172 0.855 5.62 
190 0.0165 1.33 0.019 0.0145 0.864 5.22 

The figure illustrates the variation of normalized c (c/b) versus a 
(b/a=k) for different values of working pressure. This is a useful 
diagram as, having known the value of working pressure, the 
figure can provide the optimum values of c and a.  
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The variation of the weight of cylinder versus working 
pressure for  a single steel and steel-aluminum compound cylinder 
is illustrated in figure 10. As the figure suggests, as far as the 

weight of the cylinder is concerned, the difference between a 
single and a compound cylinder becomes more significant at 
higher pressures. The percent of weight reduction versus k is 
depicted in figure 11. 
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It can be deduced from the figure that while, the reduction of 
weight is negligible for the values of k<2.5, for 2.5<k<5.5 
increases markedly and thereafter begins to flat out.  
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Figure 6 illustrates the shape of the specimens tested in this 
work. The shapes of specimens were adopted from the work of 
Manning [12 & 13]. Dimensions of the specimens were the same 
as those obtained from the optimization of the compound 
cylinders. However, the gauge length of the cylinders was 150 
mm and remained constant for all specimens. 

Fig. 6. The external and internal cylinders before testing and one 
specimen after bursting 

5- Optimization results 

5-1 single-metal compound cylinder 
In this section, the two mating cylinders are assumed to be 

made of the same material which is either steel or aluminum. The 
optimization is performed using the optimizing problem defined 
in previous section. Having known the value of the outer radius 
(or the inner radius) of the compound cylinder, the other 
variables, 1x a� (or 3x b� ), 2x c�  and 4x � �  are calculated. 
The results for various working pressures are given in Table 2 for 
aluminum cylinders and in Table 3 for steel cylinders.  

The results are also graphically shown in figures 7 & 8  for 
aluminum and steel cylinders, respectively. It can be deduced 
from the figures that, as the working pressure increases, k=a/b 
decreases and diametral interference, �  increases.  

Table 2 
Optimum values for aluminum compound cylinder (a=0.01m) 

Pi
(Mpa) b(m) k c(m) � �mm� c/b W

(kg/m)
30 0.0144 1.44 0.012 0.0043 0.833 0.91 
35 0.0154 1.54 0.0124 0.0053 0.805 1.16 
40 0.0166 1.66 0.0129 0.0065 0.777 1.49 
45 0.018 1.80 0.0134 0.0077 0.744 1.90 
50 0.0197 1.97 0.014 0.0091 0.711 2.44 
55 0.0218 2.18 0.0145 0.0106 0.665 3.18 
56 0.022 2.20 0.0148 0.0110 0.673 3.26 

Table 3 
Optimum values for steel compound cylinder (a=0.01m)  

Pi 
(Mpa) b(m) k c(m) ��mm� c/b W

(kg/m)
250 0.0148 1.48 0.0121 0.0125 0.818 2.94 
300 0.0162 1.63 0.0128 0.0169 0.788 4.05 
350 0.018 1.80 0.0134 0.0208 0.744 5.52 
400 0.0202 2.02 0.0141 0.0253 0.698 7.60 
433 0.022 2.20 0.0148 0.0296 0.673 9.47 
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5-2 Bi-metal compound cylinders 

The optimization of bi-metal compound cylinders is the main 
objective in this work. Again, having assumed a value for outer 
radius of cylinder, the other variables are obtained using the 
optimizing problem defined in section 4. Some typical results are 
given in Table 4 and graphically shown in figure 9. 

Table 4 
Optimum values for aluminum-steel compound cylinder  

b=0.016

Pi (Mpa) a(m) k c(m) � �mm� c/b Weight
150 0.0126 1.27 0.0142 0.0104 0.888 2.40 
160 0.0123 1.30 0.0141 0.0108 0.881 2.58 
170 0.0121 1.32 0.0139 0.0114 0.869 2.70 
180 0.0119 1.34 0.0138 0.0120 0.863 2.82 
190 0.0117 1.37 0.0137 0.0127 0.856 2.94 

b=0.019
Pi 

(Mpa) a(m) k c(m) � mm� c/b Weight

150 0.0149 1.28 0.0168 0.0121 0.884 3.43 
160 0.0147 1.29 0.0167 0.0131 0.879 3.57 
170 0.0144 1.32 0.0165 0.0136 0.868 3.79 
180 0.0141 1.35 0.0164 0.0142 0.863 4.00 
190 0.0138 1.38 0.0162 0.0147 0.853 4.21 

b=0.022
Pi 

(Mpa) a(m) k c(m) � �mm� c/b Weight

150 0.0173 1.27 0.0195 0.0142 0.886 4.56 
160 0.017 1.29 0.0193 0.0150 0.877 4.81 
170 0.0167 1.32 0.0191 0.0158 0.868 5.06 
180 0.0163 1.35 0.019 0.0164 0.864 5.38 
190 0.016 1.38 0.0188 0.0172 0.855 5.62 
190 0.0165 1.33 0.019 0.0145 0.864 5.22 

The figure illustrates the variation of normalized c (c/b) versus a 
(b/a=k) for different values of working pressure. This is a useful 
diagram as, having known the value of working pressure, the 
figure can provide the optimum values of c and a.  
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The variation of the weight of cylinder versus working 
pressure for  a single steel and steel-aluminum compound cylinder 
is illustrated in figure 10. As the figure suggests, as far as the 

weight of the cylinder is concerned, the difference between a 
single and a compound cylinder becomes more significant at 
higher pressures. The percent of weight reduction versus k is 
depicted in figure 11. 

0

20

40

60

80

340 350 360 370 380 390 400

P(Mpa)

W
ei

gh
t (

kg
)

St. Al.+St.

Fig. 10. Variation of the weight of single and compound cylinders 
versus internal pressure ratio k 

0

15

30

45

60

2.5 3.5 4.5 5.5

k (b/a)

D
ec

re
as

in
g 

of
 w

ei
gh

t (
%

)

Fig. 11. The rate of weight reduction for compound cylinder 
versus k 

It can be deduced from the figure that while, the reduction of 
weight is negligible for the values of k<2.5, for 2.5<k<5.5 
increases markedly and thereafter begins to flat out.  
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In figure 12, the variation of maximum stress in aluminum 
cylinder and the weight versus c/b for three types of cylinder, 
steel single, steel-steel compound and aluminum-steel compound 
are compared. The figure compares the results for the optimized 
conditions, a=0.01m, c=0.056m, b=0.028m, � =0mm, 

190ip MPa� , with non-optimized conditions. As the figure 
shows, the optimum value of c/b is located at the intersection of 
maximum stress and weight graphs. The figure clearly illustrates 
the superiority of aluminum-steel compound cylinder with respect 
to the other two types of cylinders. 

In figure 13, maximum stress and the weight of steel (inner 
cylinder) are plotted against c/a. As the figure suggests, the 
maximum stress in inner cylinder diminishes and the weight rises 
as c/a increases. The two curves intersect at the optimum point, 
c/a=2.52. This point corresponds to the optimum state, a=0.02 m, 
c=0.0491m, b=0.08m, � =0.02574, 320ip MPa� .

Fig. 13. Variation of maximum stress and the weight of steel 
(inner cylinder) against c/a 
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Fig. 14. Variation of maximum stress and the weight of aluminum 
(outer cylinder) against c/a

A similar diagram for aluminum (outer cylinder) is drawn in 
figure 14. As the figure indicates, the maximum stress in outer 
cylinder diminishes and the weight rises as c/a increases. The two 
curves intersect at the optimum point, c/a=2.52.  

As stated in section 1, elasto-plastic regime can increase the 
pressure capacity of compound cylinders. In this work, steel-steel 
compound cylinders were autofrettaged before applying an 
internal working pressure. The results are compared with those 

obtained for a steel-steel compound cylinder without autofrttage 
in figure 15. The optimization problem is the same as that defined 
in section 4. The hoop and radial stress distribution are given by 
equations 20 to 23. It can be seen in figure 15 that the weight of 
the autofrettaged compound cylinder is significantly higher than 
that for non-autofrettaged cylinders.  
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6- Numerical simulations 
The finite element predictions were obtained using the 

elastic-plastic module of the ANSYS finite element code. An 
axisymmetric finite element mesh using second order 
quadrilateral elements were used, as shown in figure 16. In the 
numerical simulations, kinematic hardening with 0� � was 
considered for the material model [14]. It is evident that the 
Bauchinger effects are very important in analysis of thick-walled 
cylinders which are subjected to reversed loadings [14]. On the 
other hand, � =1 corresponds to a state of pure isotropic 
hardening. A kinematic/isotropic hardening is defined by a value 
of � between 0 and 1. The value of �  can be estimated from a 
reversed loading test. From a number of tension-compression 
tests, the materials were found to be pure kinematic hardened 
( 0� � ).   

Fig. 16. A finite element model of the compound cylinder 

Numerical simulations of aluminum compound cylinders 
were carried out using the optimized variables given inTable 2: 
a=0.01 m, c=0.0148 m ,b=0.022 m and � =0.011 mm. 

The von-Mises stress distribution across the wall of the 
cylinder is shown in figure 17. As the figure suggests, internal 
radii of the inner and outer cylinders experience the same level of 
von-Mises equivalent stress which is exactly equal to the yield 
stress of the material used for the simulations. This verifies the 
results given by Majzoobi et al [7] as described in section 1. 
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When a variable violates its optimum value, the stress at the 
internal radii would be no longer the same. A typical example of 
the state of stress for non-optimized condition is illustrated in 
figure 18. The figure clearly shows that for a slightly different 
value of c (c=0.014 m), the stress distribution becomes quite 
different from the optimized conditions. 

Numerical simulations of steel compound cylinders were 
carried out using the optimized variables given in Table 3: 
a=0.0165 m � c=0.019 m , b=0.022 m � �=0.0145 mm. 

Fig. 17. von-Mises stress distribution in aluminum alloy 
compound cylinder for optimized conditions. a=0.01 m, c=0.0148 
m ,b=0.022 m and � =0.011 mm 

Fig. 18. von-Mises stress distribution in aluminum alloy 
compound cylinder for non-optimized conditions. a=0.01 m �
c=0.014 m , b=0.022m and � =0.011 mm 

The von-Mises stress distribution across the wall of the 
cylinder is shown in figure 19. Again, as observed for aluminum 
cylinders , the figure suggests that, internal radii of the inner and 
outer cylinders experience the same level of von-Mises equivalent 
stress, exactly equal to the yield stress of the steel alloy used for 

the simulations. A typical example of the state of stress for non-
optimized condition is illustrated in figure 20. The figure clearly 
shows that for a slightly different value of c (c=0.0195 m), the 
stress distribution becomes quite different from the optimized 
conditions

Numerical simulations of aluminum-steel compound cylinders 
were carried out using the optimized variables given in Table 4: 
a=0.02 m � c=0.0491 m , b=0.08 m � �=0.0257 mm. 

The von-Mises stress distribution across the wall of the 
cylinder is shown in figure 21. The results shown in the figure are 
quite consistent with those given for aluminum and steel cylinders 
in figures 17 and 19. As seen in the figure, von-Mises stress at the 
inner radii of steel (inner cylinder) and aluminum (outer cylinder) 
is equal to the yield stress of steel ( 700y MPa� � ) and the yield 

stress of aluminum ( 90y MPa�  ), respectively. 

Fig. 19. von-Mises stress distribution in steel alloy compound 
cylinder for optimized conditions. a=0.0165 m � c=0.019 m , 
b=0.022 m � �=0.0145 mm 

Fig. 20. von-Mises stress distribution in steel alloy compound 
cylinder for non-optimized conditions.. a=0.0165 m � c=0.0195m ,
b=0.022 m � � =0.0145 mm 

6.  Numerical simulations
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In figure 12, the variation of maximum stress in aluminum 
cylinder and the weight versus c/b for three types of cylinder, 
steel single, steel-steel compound and aluminum-steel compound 
are compared. The figure compares the results for the optimized 
conditions, a=0.01m, c=0.056m, b=0.028m, � =0mm, 

190ip MPa� , with non-optimized conditions. As the figure 
shows, the optimum value of c/b is located at the intersection of 
maximum stress and weight graphs. The figure clearly illustrates 
the superiority of aluminum-steel compound cylinder with respect 
to the other two types of cylinders. 

In figure 13, maximum stress and the weight of steel (inner 
cylinder) are plotted against c/a. As the figure suggests, the 
maximum stress in inner cylinder diminishes and the weight rises 
as c/a increases. The two curves intersect at the optimum point, 
c/a=2.52. This point corresponds to the optimum state, a=0.02 m, 
c=0.0491m, b=0.08m, � =0.02574, 320ip MPa� .

Fig. 13. Variation of maximum stress and the weight of steel 
(inner cylinder) against c/a 
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A similar diagram for aluminum (outer cylinder) is drawn in 
figure 14. As the figure indicates, the maximum stress in outer 
cylinder diminishes and the weight rises as c/a increases. The two 
curves intersect at the optimum point, c/a=2.52.  

As stated in section 1, elasto-plastic regime can increase the 
pressure capacity of compound cylinders. In this work, steel-steel 
compound cylinders were autofrettaged before applying an 
internal working pressure. The results are compared with those 

obtained for a steel-steel compound cylinder without autofrttage 
in figure 15. The optimization problem is the same as that defined 
in section 4. The hoop and radial stress distribution are given by 
equations 20 to 23. It can be seen in figure 15 that the weight of 
the autofrettaged compound cylinder is significantly higher than 
that for non-autofrettaged cylinders.  
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6- Numerical simulations 
The finite element predictions were obtained using the 

elastic-plastic module of the ANSYS finite element code. An 
axisymmetric finite element mesh using second order 
quadrilateral elements were used, as shown in figure 16. In the 
numerical simulations, kinematic hardening with 0� � was 
considered for the material model [14]. It is evident that the 
Bauchinger effects are very important in analysis of thick-walled 
cylinders which are subjected to reversed loadings [14]. On the 
other hand, � =1 corresponds to a state of pure isotropic 
hardening. A kinematic/isotropic hardening is defined by a value 
of � between 0 and 1. The value of �  can be estimated from a 
reversed loading test. From a number of tension-compression 
tests, the materials were found to be pure kinematic hardened 
( 0� � ).   

Fig. 16. A finite element model of the compound cylinder 

Numerical simulations of aluminum compound cylinders 
were carried out using the optimized variables given inTable 2: 
a=0.01 m, c=0.0148 m ,b=0.022 m and � =0.011 mm. 

The von-Mises stress distribution across the wall of the 
cylinder is shown in figure 17. As the figure suggests, internal 
radii of the inner and outer cylinders experience the same level of 
von-Mises equivalent stress which is exactly equal to the yield 
stress of the material used for the simulations. This verifies the 
results given by Majzoobi et al [7] as described in section 1. 
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When a variable violates its optimum value, the stress at the 
internal radii would be no longer the same. A typical example of 
the state of stress for non-optimized condition is illustrated in 
figure 18. The figure clearly shows that for a slightly different 
value of c (c=0.014 m), the stress distribution becomes quite 
different from the optimized conditions. 

Numerical simulations of steel compound cylinders were 
carried out using the optimized variables given in Table 3: 
a=0.0165 m � c=0.019 m , b=0.022 m � �=0.0145 mm. 

Fig. 17. von-Mises stress distribution in aluminum alloy 
compound cylinder for optimized conditions. a=0.01 m, c=0.0148 
m ,b=0.022 m and � =0.011 mm 

Fig. 18. von-Mises stress distribution in aluminum alloy 
compound cylinder for non-optimized conditions. a=0.01 m �
c=0.014 m , b=0.022m and � =0.011 mm 

The von-Mises stress distribution across the wall of the 
cylinder is shown in figure 19. Again, as observed for aluminum 
cylinders , the figure suggests that, internal radii of the inner and 
outer cylinders experience the same level of von-Mises equivalent 
stress, exactly equal to the yield stress of the steel alloy used for 

the simulations. A typical example of the state of stress for non-
optimized condition is illustrated in figure 20. The figure clearly 
shows that for a slightly different value of c (c=0.0195 m), the 
stress distribution becomes quite different from the optimized 
conditions

Numerical simulations of aluminum-steel compound cylinders 
were carried out using the optimized variables given in Table 4: 
a=0.02 m � c=0.0491 m , b=0.08 m � �=0.0257 mm. 

The von-Mises stress distribution across the wall of the 
cylinder is shown in figure 21. The results shown in the figure are 
quite consistent with those given for aluminum and steel cylinders 
in figures 17 and 19. As seen in the figure, von-Mises stress at the 
inner radii of steel (inner cylinder) and aluminum (outer cylinder) 
is equal to the yield stress of steel ( 700y MPa� � ) and the yield 

stress of aluminum ( 90y MPa�  ), respectively. 

Fig. 19. von-Mises stress distribution in steel alloy compound 
cylinder for optimized conditions. a=0.0165 m � c=0.019 m , 
b=0.022 m � �=0.0145 mm 

Fig. 20. von-Mises stress distribution in steel alloy compound 
cylinder for non-optimized conditions.. a=0.0165 m � c=0.0195m ,
b=0.022 m � � =0.0145 mm 
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Fig. 21. von-Mises stress distribution in aluminum- steel 
compound cylinder for optimized conditions. a=0.02 m �
c=0.0491 m , b=0.08 m � �=0.0257 mm

Again, a typical example of the state of stress for non-
optimized condition is illustrated in figure 22. It can be seen in the 
figure that for a slightly different value of c (c=0.058 m), the 
stress distribution becomes quite different from the optimized 
conditions, i.e. von-Mises stress at the inner radii of compound 
cylinder is less than the yield stresses of steel and aluminum 
cylinders.  

Fig. 22. von-Mises stress distribution in aluminum- steel 
compound cylinder for non-optimized conditions. a=0.02 m �
c=0.058 m , b=0.08 m � �=0.0257 mm  

7- Experimental results 
The experiments were carried out using a high pressure pump  

with a pressure capacity ranging from 1 to 40000 psi. The diag 
gauge of the pump had a minimum division of  500 psi. Therefore 
an error of about 250psi� was expected for each reading. The 

dimensions of the specimens and the bursting pressure for 
aluminum-aluminum compound cylinders are given in Table 6. 
The specimens’s  geometry was already shown in figure 5. Two 
of the specimens (the first two rows of the table) have the 
optimum values provided in section 5. For the other specimens, a, 
b and � were kept constant and the value of the shrinkage radius, 
c, was varried. 

Table 6 
Bursting pressure of optimized and non-optimized cylinders 

Specim. NO. a
(mm) 

c
(mm) 

b
(mm) 

    
( )mm
�

( )
burstP

psi
Optimum 
(case 1) 10 14.9 22 0.0022 8000 

Optimum 
(case 2) 10 14.8 22 0. 022 8000 

3 10 13.5 22 0. 022 7500 
4 10 14 22 0. 022 7900 
5 10 15.5 22 0. 022 7000 
6 10 16.6 22 0. 022 5000 

As can be seen from the table,  the maximum bursting 
pressure has been attained for the optimized dimmensions while, 
for non-optimized states the bursting pressure is considerable 
lower with respect to the optimized conditions.  

In order to avoid the paper to become lenghtly, the results for 
other cylinders, steel-steel and alumium steel compound cylinders  
are not given here.  

8- Conclusions 
From the optimization, numerical and experimental results the 

following conclusion can be derived: 
1. High pressure cylinders can partially be replaced by a lower, 

lighter and cheaper material to reduce the cost and weight of 
cylinders. 

2. The weight of a compound cylinder could reduce by 60% 
with respect to its equivalent single steel cylinder for the same 
working pressure.

3. The difference between a compound cylinder and its 
equivalent single cylinder becomes more significant at higher 
working pressures.

4. While, the reduction of weight is negligible for the values of 
k<2.5, it increases markedly for 2.5<k<5.5 and thereafter 
begins to flat out.  

5. The numerical results indicated that for an optimum 
condition, the stress at the internal radii of the outer and inner 
cylinders become equal to the yield stresses of the materials 
used for compound cylinders. For the compound cylinders 
made of a single material, both the internal radii of the 
compound cylinder experience the same level of von-Mises 
equivalent stress.

6. A number of cylinders with the optimized and non-optimized 
dimensions were pressurized to burst. The experimental results 
also showed higher bursting pressure for optimized cylinders. 

7. The weight of autofrettaged compound cylinders is 
significantly higher than that for non-autofrettaged cylinders.  
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Fig. 21. von-Mises stress distribution in aluminum- steel 
compound cylinder for optimized conditions. a=0.02 m �
c=0.0491 m , b=0.08 m � �=0.0257 mm

Again, a typical example of the state of stress for non-
optimized condition is illustrated in figure 22. It can be seen in the 
figure that for a slightly different value of c (c=0.058 m), the 
stress distribution becomes quite different from the optimized 
conditions, i.e. von-Mises stress at the inner radii of compound 
cylinder is less than the yield stresses of steel and aluminum 
cylinders.  

Fig. 22. von-Mises stress distribution in aluminum- steel 
compound cylinder for non-optimized conditions. a=0.02 m �
c=0.058 m , b=0.08 m � �=0.0257 mm  

7- Experimental results 
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gauge of the pump had a minimum division of  500 psi. Therefore 
an error of about 250psi� was expected for each reading. The 
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aluminum-aluminum compound cylinders are given in Table 6. 
The specimens’s  geometry was already shown in figure 5. Two 
of the specimens (the first two rows of the table) have the 
optimum values provided in section 5. For the other specimens, a, 
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As can be seen from the table,  the maximum bursting 
pressure has been attained for the optimized dimmensions while, 
for non-optimized states the bursting pressure is considerable 
lower with respect to the optimized conditions.  

In order to avoid the paper to become lenghtly, the results for 
other cylinders, steel-steel and alumium steel compound cylinders  
are not given here.  
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From the optimization, numerical and experimental results the 

following conclusion can be derived: 
1. High pressure cylinders can partially be replaced by a lower, 

lighter and cheaper material to reduce the cost and weight of 
cylinders. 

2. The weight of a compound cylinder could reduce by 60% 
with respect to its equivalent single steel cylinder for the same 
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3. The difference between a compound cylinder and its 
equivalent single cylinder becomes more significant at higher 
working pressures.

4. While, the reduction of weight is negligible for the values of 
k<2.5, it increases markedly for 2.5<k<5.5 and thereafter 
begins to flat out.  
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condition, the stress at the internal radii of the outer and inner 
cylinders become equal to the yield stresses of the materials 
used for compound cylinders. For the compound cylinders 
made of a single material, both the internal radii of the 
compound cylinder experience the same level of von-Mises 
equivalent stress.

6. A number of cylinders with the optimized and non-optimized 
dimensions were pressurized to burst. The experimental results 
also showed higher bursting pressure for optimized cylinders. 
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significantly higher than that for non-autofrettaged cylinders.  
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