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ABSTRACT
Purpose: The paper analyses the thin-walled tube drawing processes made in conical converging dies with 
fixed inner plugs.
Design/methodology/approach: The analysis has been made by analytical methods. Concretely, the Slab 
Method (SM), with and without friction effects, and the Upper Bound Method (UBM) have been appliced. In 
this last case, the plastic deformation zone has been modelled by Triangular Rigid Zones (TRZ). The friction 
between the out surface of the tube and the die, and between the inner surface of the tube and the plug has been 
modelled by Coulomb friction. Besides, the change in the diameter of the tube has been considered negligible 
during the process, then, the forming process can be assumend that it is made under a state of plane strain.
Findings: The results obtained by each method have been compared between them and, besides, with the 
obtained ones by the Finite Element Method (FEM) and the experimental ones extract from the literature about 
the theme. It has been able to be proven that all of them are reasonably close to a value for a certain set of 
parameters values.
Research limitations/implications: This work is a first approache to the problem. As suggestion for future 
researches it is possible to remark a study of the different triangular rigid zones configurations in order to 
identify the TRZ pattern that requires smaller energy consumption.
Practical implications: Unless it was needed to know a great number of outputs, the analytical methods can be 
a good option and, especially, the Upper Bound Method since, besides of completing and improving the classical 
analysis of other metalforming processes previously.
Originality/value: The paper is orginal since the bibliographical review has allowed testing that previous works 
about the tubes drawing analysis made by the Upper Bound Method under plane strain and Coulomb friction 
conditions did not exist until the moment.
Keywords:  Machining and processing; Plastic forming; Tube drawing; Slab method; Upper bound method

1. Background 

Most of metallic tubular pieces obtained by primary 
processes, such as casting, impact extrusion, deep drawing or 
ironing, require, before being used, other processes, denominated 

secondary, to take its diameter, the thickness of its wall or both 
until standardized values of provision [2,3,26,48,52]. 

The secondary processing of tubes can be carried out by 
diverse processes of metalforming. The basic process consists of 
making pass a tube through a conical convergent die by means of 
which, of controlled form, its diameter and/or its thickness are 
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reduced. The process can require or not the use of mandrels and 
plugs that are located inside the tube and delimit the dimensions 
of their inner diameter. The main variants of this process are: 
sinking, mandrel and plug drawing and ironing.

Tubes drawing processes began to study at the beginning of 
the last century. It is possible to emphasize the work of Siebel and 
Weber that, in 1935, studied the distribution of tensions and the 
metal flow in this type of processes [11]. 

In the middle of the Fortieth, Sachs directed to a series of 
works about the diminution of diameter and thickness of thin-
walled tubes [19-22]. Sachs and his collaborators calculated the 
necessary stress to draw tubes using different internal tools, 
mainly movable mandrels. Their studies, based on the method of 
stress local analysis, were tested by means of experiments in 
later works [19]. 

At the beginning of the Fiftieth, Hill analysed, from an 
industrial point of view, the requirements necessary to predict the 
drawing force and the change in the wall thickness [51] and 
Sachs, along with Hoffman, compiled in their book entitled 
Introduction to the theory of plasticity for engineers the main 
theories and conclusions published previously on the subject in 
scientific journals [48]. 

The researches of Blazynski and Cole [59], Johnson and Mellor 
[60] and Green [46] are in the same line of that one initiated by 
Sachs. Blazynski and Cole made an experimental study of the tube 
drawing using plugs. The most important result of that work was 
the semiempirical method that they proposed for the calculation of 
the additional or redundant power [59]. Green contributed to the 
study of the processes of tube drawing with his theoretical works 
for the calculation of the additional power applied to cases of flat 
deformation [46]. On the other hand, Elion and Alexander carried 
out an industrial research for the optimization of variables of this 
kind of processes [52]. The experimental and theoretical study of 
the reduction of tube diameter made by Moore and Wallace is also 
of this time [22]. 

Until the Ninetieth, when the first works of tubes drawing 
analysed by numerical methods began to appear and, in particular, 
by the Finite Element Method (FEM) [10][35][40-43][55], the 
contributions to the subject that deserve a special mention are 
those of Avitzur [2], who experimentally analysed the main 
processes related to the tubes drawing, of Collins and Williams 
[27], who proposed an axisimmetric slide-lines field analogous to 
Hill one [50] used in the bars drawing, and of Um and Lee, who 
gave an approximated solution to the problem of tubes drawing 
with fixed plugs with partial friction by means of the Limit 
Analysis (LA) [37]. 

The bibliographical review has allowed to conclude that, 
from the appearance of numerical methods, the analytical 
methods have been displaced. Not only in the study of the tube 
drawing but also in the rest of the metalforming processes. 

Basically, due to the numerical methods allow, in general: 
modelling these processes in a relatively simple way, even 
when these involve a great amount of variables; obtaining 
multitude of results with a high precision; and comparing 
results by simple observation of the simulations offered by most 

of software programmes [1,5,7,9,14,15,23,28,30,42,44,47,49,58]. 
Nevertheless, numerical methods require great resources of 
calculation and a good knowledge of the used programme, which 
usually is translated in high economic investments, for the 
acquisition of the hardware and software necessary to make the 
calculations, and time investment, for its learning and handling. 
Then, unless it is needed to know a great number of outputs, the 
analytical methods can be a good option [4,9,17,24,29,38,39]. 

In this work a study of the thin-walled tubes drawing (hi<<DIi,
where hi is the initial thickness of the tube and DIi its initial inner 
diameter) in conical convergent dies with an inner plug has been 
made. The used analytical method has been the Limit Analysis, 
and, more concretely, the Upper Bound Method (UBM). The 
plastic deformation zone has been modelled by means of 
Triangular Rigid Zones (TRZ). The friction in the interfaces: tube 
outer surface-die and tube inner surface-plug has been 
assumed as Coulomb type, denominating them by �1 and �2
respectively. Besides, the tube inner diameter diminution has 
been considered negligible (�DIi/DIi<<1), as it usually happens 
in most of industrial processes. Then it is possible suppose 
that the inner diameter is constant and very close to the outer 
diameter value. In this case, like circumferential deformation 
does not exist, it is possible to consider that the process takes 
place under plane strain conditions. The results have been 
compared with the obtained ones by the Slab Method (SL), 
with and without friction, the Finite Elements Method and 
other ones extracted from the experimental tests found in the 
literature about this subject. 

2. Tubes drawing in convergent dies 
with a fixed plug 

2.1. Geometric definition 

The process to analyse is the thin-walled tube drawing 
through conical convergent dies with an inner, conical or 
cylindrical, plug fixed to the draw bench where the process is 
made, like Figure 1 shows. 

The tube inner diameter is going to be considered constant 
along the process DIi � DIf � D, varying only the thickness from 
an initial value of hi, to a final one of hf, as it is shown in Figure 
2 in a schematic way. In order to see better the zone between the 
die and the plug, this one has been extended. 

2.2. Process variables 

The process variables related to with the geometry are: 
� The conical convergent die semiangle, �.
� The fixed conical plug semiangle, �, placed inside of the die. 
� The tube cross-sectional area reduction, r, defined by:  

2.2.  Process variables

2.1.  Geometric definition

2.  Tubes drawing in convergent 
dies with a fixed plug
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Fig. 1. Scheme of the tubes drawing process in convergent conical 
die with fixed conical plug. 

Fig. 2. Detail of the plastic deformation zone.
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where DEi and DEf  represent the initial and final outer diameters 
of the tube respectively and, DIi and DIf  the inner ones, initial and 
final as well. Both are related by means of the following 
expressions:

iIiEi hDD 2��  (4) 

fIfEf hDD 2��  (5) 

being hi and hf, the thickness at the entrance and at the exit of 
the die respectively. Introducing the values given by (4) and (5) 
in the expressions (2) and (3) and, carrying these into (1) it is 
possible to write: 
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Taking into account that in the tube drawing DIi � DIf � D,
the previous expression can be written: 
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Besides, hi<<DIi�DIf �D and hf<hi, then hf<<DIi�DIf �D and, 
therefore, in the numerator and the denominator can be 
depreciated the second order terms, being, finally, the expression: 

i

f

h
h

r �� 1  (8) 

If there were variation of the tube inner diameter and then 
DIi>DIf was verified, the expression for the tube cross-sectional 
area reduction would have to be written in the following way: 

iIi

fIf

hD
hD

r �� 1  (9) 

2.3. Process conditions 

The stress state in which the deformation along a direction is 
null, is known like plane strain. When in a thin-walled tube 
drawing process with fixed plug there is no appreciable variation 
of its inner diameter (hi�hf<<DIi�DIf �D), the material placed 
between the die and the plug is under a stress state like the 
mentioned one. Then, the process is carried out under plane strain 
conditions.

In this type of processes, the metal flow is always parallel to 
the plane (x, z) and is restricted in the circumferential direction, 
by the die and the plug. Therefore, d�2 = 0 and, if there is neither 
change of volume nor elastic deformation (incompressible rigid-
plastic materials), also d�1 = - d�3. According to Hill [28], these 
expressions represent a material under shear stress state in which 
the flow takes place as a result of applying k, denominated shear 
yield stress.

In addition, a superposed hydrostatic stress, �2, (generally of 
compression) can exist. This stress alters the values of �1 and �3
but does not influence on the flow. In these conditions the 
principal stresses can be written: 

k�� 21 ��  (10) 

2.3.  Process conditions
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k�� 23 ��  (11) 

� �312 2
1 ��� ��  (12) 

this takes to: 

k231 ����  (13) 

And, taking into account the relationship from von Mises, it 
can be written 

32
YSk ��  (14) 

Where: Y, it is the uniaxial yield stress and, S, the yield 
stress under plane strain.

The metal at the die exit is in a state of uniaxial stress rather 
than of plane strain, because it is free to undergo transverse or 
circumferential strains [25][45][51]. For that reason, some 
authors recommend that the plug was slightly larger than that 
necessary one to obtain the precise dimensions of the tube [2]. 

 The strength that finally limits the last pass is the uniaxial 
yield stress, Y, and no the yield stress under plane strain, S.
Although, the plane strain conditions stay in the real 
deformation zone. It is supposed the breakage is reached as soon 
as the uniaxial yield stress, Y, appears in the tube drawing. This 
condition comes given by the following expression, that can be 
considered like the limit of the tubes drawing. 

866,0��
S
Y

S
zf�
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On the other hand, when there is a relative movement between 
two surfaces in contact a resistance to the movement denominated 
friction appears. The mechanisms that produce this phenomenon 
are complex and exact functional relationships between the 
friction and other variables of the process have not been, still, 
established.  

The most common simplifications suppose that the friction 
stress, ��� between two surfaces that slide can be: 
� Coulomb type, when the shear stress, ��� is proportional to the 

pressure, p, between the surfaces in contact according to the 
expression ���p, where the proportionality coefficient, ����is 
called Coulomb friction coefficient.
� Partial friction type, where the shear stress, ��� is assumed 

proportional to the shear yield stress, k, and given by �=mk,
verifying the values of the partial friction coefficient, m, next 
expression 0<m<1.

In this case, the existing friction between the interfaces: 
die-tube outer surface and plug-tube inner surface have been 
considered of Coulomb type and with values �1 and �2
respectively. 

3. Classical analysis 

3.1. Introduction 

In the tubes drawing, like in most of the metalforming 
processes, it is important to know the energy that is required to 
make it, mainly, in order to select the machines and the equipment 
where the process will be carried out. 

The total energy ET necessary in a metalforming process can 
be assimilated to the work developed by a force that produce a 
determined displacement. Dividing the energy by the total volume 
of the piece, it is possible to calculate the specific energy.  

On the other hand, that energy by volume unit can be obtained 
as well by means of: 

���� 3l
Eu  (16) 

Like the deformation, �, is adimensional, the stress, �� has the 
same dimensions that the specific energy, u. In big deformations 
and for materials with hardening by deformation (��cte for �
variable), the specific energy by volume unit is calculated by 
means of: 
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1
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Next, two basic analyses used, traditionally, in the estimation 
of the energy involved in the metalforming processes are going to 
be applied in the tube drawing case.  

The first one is the homogeneous deformation method that 
only considers the change in the shape of the piece. The second 
one is the stress local analysis method that, in addition to the 
homogeneous deformation energy, considers the dissipated one by 
friction.

3.2.Homogeneous deformation method 

The Homogeneous Deformation Method (HDM) is based on 
supposing that any cubical element of the original metal is 
transformed into a parallelepiped one when the piece is plastically 
deformed. This method, that only considers the energy necessary 
to change the shape of the piece, allows obtaining a small value of 
the necessary energy. Sometimes has been considered like the 
Slab Method without friction. 

The expression of the specific energy used in deforming a 
piece homogeneously can be written in adimensional terms, 
dividing by the yield stress of the material that is being deformed. 
In the plane strain case that it is being analysed, this one comes 
given by S and, therefore, it is possible to write: 

rS
zf
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1
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3.  Classical analysis

3.1.  Introduction

3.2.  Homogeneous deformation method
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Where: 
� �zf is the drawing stress at the die exit. 
� S, the yield stress under plane strain.
� r, the tube cross-sectional area reduction.

The expression of the energy required in the process by means 
of specific and adimensional terms is especially useful since, this 
will allow knowing the necessary energy for making a concrete 
piece when its material and its volume were known. 

Taking into account the r value given by (8) and the 
expression (14) it is possible write: 

f

izf

h
h

k
ln

2
�

�
 (19) 

The solution given by the Homogeneous Deformation Method 
is not very precise since it only considers the reduction, r, but it 
does not consider neither the friction between tube-die and 
between tube-plug (�1 and �2) nor its geometry (�  and �). This 
can be seen in Tables 1 and 2, where the values given by the 
expression (19) have been calculated for different tube cross-
sectional area reductions (r = 0,10;  0,20 and 0,30). 

Concretely, in Table 1, the specific adimensional energy 
versus the semiangle of the conical plug, �, has been collected for 
any values of �, �1 and �2 and, in Table 2, the specific 
adimensional energy versus the semiangle of the die, �, for any 
values of �, �1 and �2.

Table 1.  
Homogeneous deformation versus � for any values of �, ��
and �2.

��(º) � (º) �1 �2 HDM
r =0,10 

HDM
r =0,20 

HDM
r =0,30 

0-15 0-14 0-0,30 0-0,30 0,105 0,223 0,357 

Table 2.  
Homogeneous deformation versus � for any values of �, ��
and ����

��(º) � (º) �1 �2 HDM
r =0,10 

HDM
r =0,20 

HDM
r =0,30 

0-15 0-14 0-0,30 0-0,30 0,105 0,223 0,357 

Fig. 3. Homogeneous deformation method in the tubes drawing. 

3.3. Slab method

The Slab Method (SM), also known like stress local 
analysis method, considers the friction. Then, the results 
obtained by this method are, in general, a better approach to 
the solution of the problem. 

Figure 4 presents a scheme of the process. In particular, a 
differential element of the tube placed between the die and the 
plug has been represented along with the stresses acting on it. 
Supposing that the process take place under plane strain 
conditions (h<<D and D � constant) and that the pressure on the 
die, p1, is equal to the pressure on the plug, p2, and of value, p,
then, the forces balance provides the next expression:�

0)())(( 21 �������� dzpdzptgdzptgdhhdh zzz �������  (20) 

Taking into account that the variation of the wall thickness 
can be represented by: 

dztgtgdh )( �� ��  (21) 

the equation (21) is 

� � 0)1( * ���� dhBphd zz ��  (22) 

where, B* comes given by: 

��
��
tgtg

B
�
�

� 21*  (23) 

Fig. 4. Stresses acting on a thin-walled tube element. 

This function is decreasing when ��increases, it is creasing 
when ���increases, and, following this general tendency, it 
presents higher values according to �1, �2 or both increase. This 
can be seen in Figures 5 and 6 where the constant B* has been 
plotted versus �, for ����º���2���and �1 varying from 0.01 to 0.30 
(Figure 5) and, versus �� for��=20º and the same �2 �and �1
values that in the previous case (Figure 6). 

The forces balance in the radial direction allows supposing 
that the contribution of the friction to the pressure in the die is 
small and that the tensions can be approximated by: 

3.3.  Slab method
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z�� �1  (24) 

p��2�  (25) 

When a closed pass is made and there is not diameter 
variation such as stresses can be related with the flow condition in 
plane strain by means of: 

YS 155,121 �����  (26) 

Spz ���  (27) 

Substituting p in the expression (22) and operating: 

h
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BSB
d

z

z �
�� )1( **�

�
 (28) 

This expression is valid for any B* and S values, but the 
simplest solution is obtained when ��and S are constant or they 
take means values and the die walls and the plug are right and 
then, they can take constant. Integrating directly: 
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Fig. 5. Representation of the B* function versus ���

Fig. 6. Representation of the B* function versus ���
�

Where the integration constant has been calculated taking into 
account that back pull does not exist, this is, the stress is �z=�zi=0 
for h=hi. Making the same as in the homogeneous deformation 
case, according to the relationship (14) S can be substituted for 2k.

In Figure 7, the values given by the expression (29) have been 
represented. With the intention of seeing, at least in a qualitative 
way, how each one of the variables influences in the adimensional 
total energy, this has been calculated for different combinations of 
the same ones varying one of them every time. 

The curves shown in Figure 7a present the adimensional total 
energy evaluated by means of the stress local analysis versus the 
��semiangle value, for �=10º, r = 0,10; 0,20 and 0,30, and 
�1=�2=0,01. 

If these curves are compared with the values collected in Tables 1 
and 2, it can be seen that among them certain differences exist that 
pick up, in fact, the influence of the geometry, through the � and �,
and the friction by means of the coefficients �1 and �2 that are not 
kept in mind by the method of the homogeneous deformation. The 
curves of the Figure 7a are quite right and parallel to the axis x until 
values of relatively high in connection with the one rehearsed, clearly 
similar tendency to the one obtained in homogeneous deformation in 
which one does not keep in mind the friction. 

Making a similar study to the shown one, but fixing the conical 
semiangle value of the plug, �, the graphs collected in Figure 8 have 
been obtained. A cylindrical plug, �=0º has been taken, since, as it 
can be seen in the Figure 7, this value provides the smallest values in 
the adimensional total energy necessary to carry out the process. 

The behaviour versus the friction variations both in the die and in 
the plug is similar to the commented one previously. However, �f/2k
diminishes when the semiangle ��increases. Therefore, the stress local 
analysis seems to indicate that, to carry out the tubes drawing under 
good conditions, this is, to carry out the process using the smallest 
possible energy, it would be necessary: high semiangles �, small 
semiangles ��and friction coefficient �1 and �2 so small as it 
was possible. 
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a)

b)

Fig. 7. Adimensional total energy vs. �, for different reductions, r,
and friction coefficient values �1 and �2.

Relationship between the pressure in the die and in the plug 

Supposing that the contribution of the friction to the pressure 
of the die is small allows, also, justifying that the pressure in the 
die and in the plug can take practically same. In fact, from the 
forces balance provides the next relationship: 

��
��

tg
tgpp

2

1
12 1

1
�
�

�  (30) 

In order to determine the range of values that complete that the 
pressure in the plug, p2, is equal to the pressure in the die, p1, the value 
of the expression (30) has been calculated for values of: ��between 5º 
and 20º; ��between 0º and 15º and �1 and �2 between 0 and 0,30. In 
Figure 9, some of the obtained extreme values have been colleted 
with the purpose of determining the values that complete the 
supposition.

Study of the constant B*

The constant B* adopts, in its more general form, the 
expression collect in (23), however, typical cases exist, as for 
example cylindrical plug �=0º and with the same material that the 
die �1=�2, where it admits more reduced expressions as, for 
example, the shown ones in Table 3. It is interesting to notice that, 
if B* = 0 the equation (29) adopts the following expression: 

h
dh

S
d z ��
�

 (31) 

a)

b)

Fig. 8. Adimensional total energy vs. �, for different reductions, 
r, and friction coefficients values �1 and �2.
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The integration of this expression taking into account that 
there is no back pull at the die entrance provides the expression of 
the adimensional stress at the die exit given by the homogeneous 
deformation method: 

f

izf

h
h

S
ln�

�
 (32) 

Therefore, an approach to the adimensional stress due to the 
friction will be possible to have subtracting to the obtained value 
with the expression (29) the value provides by (32). This is: 
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where:  
� The subindex T has been used for representing the adimensional 

total energy and  
� The F one for the energy necessary to overcoming the external 

friction.
The values of (32), (33) and (34) have been represented in 

Figure 10 versus the semiangle of the plug �, for �=10º, r=0,10 and 
�1=�2=0,01, in Figure 10a, and �1=�2=0,10, in the Figure 10b. 
Maximum reductions 

The stresses local analysis allows calculating the maximum 
tube cross-sectional area reduction, rmax that it is possible to reach 
for some certain values of the rest of the variables that intervene in 
the process. Indeed, combining the equations (15) and (29): 
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This expression provides the hf/hi value that produces the 
maximum reduction, as it is shown in the following expression: 
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The �zf//2k value versus the reduction r, has been plotted in Figure 
13 for different values of the constant B*.

The limit imposed to the tubes drawing given by the expression 
(15) has been represented as well by means of a horizontal line.  

The maximum reduction rmax is obtained by means of the 
intersection of each one of the curves with this limit horizontal line.  

The maximum reduction, rmax, obtained in the drawing of 
tubes made of a rigid-perfectly plastic material and carried out in 
a die with an inner plug and without considering the friction 
B*=0, is equal to 0,58, as it is possible to see in the Figure 11. 

Table 3.  
Typical expressions of the constant B*.

Cylindrical plug � =0º �
��

tg
B 21* �

�

Cylindrical plug � =0º and made up of the 
same material that the die �1=�2=� �

�
tg

B 2* �

Plug made up the same material that the die 
�1=�2=� ��

�
tgtg

B
�

�
2*

Conical plug with � = - �  and made up of 
the same material that the die �1=�2=� �

�
tg

B �*

a)

b)

Fig.9. Relationship between the pressures in the plug and in the die 
for some of the most unfavourable values of �, ����1 and �2.
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a)

b)

Fig. 10. Adimensional total energy (Slab_T), homogeneous energy 
(Slab_H) and energy necessary to overcoming the external friction 
(Slab_F) estimated by means of stress local analysis.

4. Analysis by the upper bound method 
The Limit Analysis is an analytic tool that allows obtaining a 

low mark and an upper one of the exact solution. The first one by 
means of the Lower Bound Method (LBM) and, the second one, 
used in this work, by means of the Upper Bound Method (UBM).  

This last one is able to provide a value, bigger than or equal to 
that the one looked for. Therefore, taking the solution 
corresponding to the equality a quite approximated estimation is 
obtained, in many cases, to the solution of the problem. 

In this work, the processes of tubes drawing in convergent 
conical dies with inner plug have been analysed by means of the 
UBM. This has been chosen, mainly, because it allows obtaining, 

not only, an upper mark of the necessary energy to carry out the 
process but, also, because to differ among the employee in 
carrying out the homogeneous deformation, the necessary one to 
overcoming the external friction and the due one to the internal 
distortion. The UBM, besides of completing and improving the 
classical analyses, does not require big calculation resources and 
has been successfully used in the analysis of other metalforming 
processes [2][4][19] [27][29][31,32]. 

Fig. 11. Adimensional total energy in function of the reduction, r,
and the constant B*.

4.1. Deformation zone modelling 

The UBM application requires the previous deformation zone 
modelling. In this case, the pattern of multiple Triangular Rigid Zones 
(TRZ) has been used. According to the literature about the topic, this 
type of surfaces provides quite low solutions of the UBM [2]. 

In a multi-triangular field of velocities the plastic 
deformation zone is divided into n zones. In the pattern 
represented in Figure 12, n=3.  

It has been considered that the individual reductions obtained 
in each one of them are identical. Its value can be calculated 
through the expression: 

rrrr ����� 11'21  (37) 

4.2. Theoretical development 

Taking a tube made up of rigid-perfectly plastic material, 
modelling the plastic deformation zone as Figure 12 shows and 
applying the Upper Bound Method to the drawing process it is 
possible to write: 
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4.2.  Theoretical development

4.  Analysis by the upper bound 
method

4.1.  Deformation zone modelling
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Fig. 12. Modelling of the plastic deformation zone with three Trian-
gular Rigid Zones. 

Where: 
� TW�  is the necessary power to carry out the process. 
� �zf , the stress at the die exit. 
� D and hf, the diameter and the final thickness of the tube 

respectively. 
� vf, le velocity at the tube exit. 
� k, the shear yield stress. 
� 1ivOAk � , 12vOBk � , 23vBCk � , fvCDk 3� the mechanic effects 

along the discontinuities lines OA , OB , BC  and CD   respectively. 

� 11 vABp� and 31 vBDp�  the friction effect between the material 

in the deformation zone and the die along the AB and BD , and 

22 vOCp�  the friction effect between the material in the 

deformation zone and the inner plug. Along the OC . The 
pressure in the die has been supposed equal to the pressure in 
the plug and of value p. This can be justified considering, when 
the radial forces balance is made, that the contribution to the 
friction of the die is small and that the main stress can be taken 
as: z�� �1  and p��2� ; being related in a closed pass 
without diameter variation: 

kk
p z

2
1

2
�

��  (39) 

that represents the flow condition Under plane strain. 
� vij, the relative speed between the i and j blocks (the three 

triangular ones and the rectangular at the entrance and at the 
exit of the tube). 

Keeping in mind the value of the pressure given by the 
expression (39), the symmetry of the problem and the geometric 
and cinematic relationships that exist between the segments and 
the relative velocities (Figure 12), the equation (38) can be written 
by means of the following expression that, like it will be seen 
later on, it represents the adimensional total energy necessary to 
carry out the process: 
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 (40) 

In order to validate the pattern, the obtained results with the 
expression (40) have been compared with the values gotten by the 
Slab method calculated by means of the expression (29). Both 
have been represented in Figure 13. 

Besides, they have been compared, also, with those that 
Yoshida and his collaborators achieved using the Finite Elements 
Method (FEM) and experimental tests [35]. Both have been 
collected in Figure 14. 

5. Conclusions 
In this work, the study of the thin-walled tube drawing 

processes has been approached for a convergent conical die using 
a conical inner plug fixed to the draw bench where the process is 
carried out. 

Fig. 13. Validation of the pattern for comparison with the results 
obtained by the Upper Bound Method and by the Slab one. 

Fig. 14. Validation of the pattern for comparison with the results 
of Yoshida, obtained by FEM (Yoshida_FEM) and by 
experimental tests (Yoshida_Exp). 

5.  Conclusions
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The process has been analyzed by means of the Upper Bound 
Method under plane strain and Coulomb friction condition. The 
deformation zone has been modelled by means of Triangular 
Rigid Zones (concretely three).  

The expression of the adimensional total specific energy that 
provides this method when it is applied to the described model 
has been calculated. 

A first validation of the results has been made comparing 
them with those obtained by the Slab method, the Finite 
Elements Method and the experimental data found in the 
literature about the topic. 

The study began by applying the classical analysis methods, 
such as the Homogeneous Deformation Method and the Slab one. 
This has allowed to obtain a minimum mark of the necessary 
energy to carry out the process, a first estimation of the energy 
vanished by friction in the process and a range of values of the 
variables involved in it. Shortly, the Slab method seems to 
indicate that the best conditions to carry out the process are: dies 
with high semiangles, cylindrical plugs or with a little conicity, 
this is, small �-values, and friction coefficients as low as possible. 

The mathematical expression that relates the pressures in the 
die and in the plug has been determined and the variables values 
that allow considering that the pressure is the same in both 
elements without incurring in important errors have been 
calculated. 

Simplified expressions of the constant B* for the most usual 
cases (cylindrical plug made up of equal or different material 
from the die) have been presented and an expression for the 
calculation of the maximum reductions rmax, in function of B* has 
been found. 
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