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Analysis and modelling

ABSTRACT
Purpose: The purpose of this paper is optimization of the weight of compound cylinder for a specific pressure. 
The variables are shrinkage radius and shrinkage tolerance.
Design/methodology/approach: SEQ technique for optimization, the finite element code, ANSYS for 
numerical simulation are employed to predict the optimized conditions. The results are verified by testing a 
number of closed end cylinders with various geometries, materials and internal pressures.
Findings: The weight of a compound cylinder could reduce by 60% with respect to a single steel cylinder. The 
reduction is more significant at higher working pressures. While the reduction of weight is negligible for  k<2.5, 
it increases markedly for 2.5<k<5.5. The stress at the internal radii of the outer and inner cylinders become 
equal to the yield stresses of the materials used for compound cylinders. The experimental results showed higher 
bursting pressure for optimized cylinders.
Research limitations/implications: The research must be done for non-linear material models and for multiple 
compound cylinders.
Practical implications: The results can be used for high pressure vessels such as artillery tubes,  gun barrels and son on.
Originality/value: The numerical results indicated that for an optimum condition, the stress at the internal radii of 
the outer and inner cylinders become equal to the yield stresses of the materials used for compound cylinders.
Keywords:  Analysis and modelling; Numerical techniques; Compound cylinder; Optimisation; Finite element method

1. Introduction 
Autofrettage is an elastic-plastic techniques to increase the 

pressure capacity of thick-walled cylinders. In this technique, the 
cylinder is subjected to an internal pressure so that its wall 
becomes partially plastic. The pressure is then released and the 
resulting residual stresses increase the pressure capacity of the 
cylinder in the next loading stage [1 & 2]. The analysis of residual 
stresses and deformation in an autofrettaged thick-walled cylinder 
has been given by Chen [3] and Franklin and Morrison [4].  

In autofrettage, the key problem is to determine the 
appropriate the optimum of the radius of elasto-plastic junction to 
be called optr  in this paper and the autofrettage pressure, optp .

In the results reported by Harvey [6], no detailed result 
but only a concept about autofrettage was given. Brownell and 
Young [7], and Yu [8] proposed a repeated trial calculation 
method to determine optr which were a bit too tedious and 
inaccurate; moreover this method is based on limiting only 
hoop stress and is essentially based on the first strength theory 
which is in agreement with brittle materials, while pressure 
vessels are made generally from ductile materials [9 & 10] 
which are in excellent agreement with the third or the fourth 
strength theory [11 & 13]. The graphic method presented by 
Kong [12] was also a bit too tedious and inaccurate. The 
purpose of the present paper is to find out a simple, applicable, 
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and reasonable appraoch to determine optr which does not 
appear to be available in the existing literature, and to study 
problems about autofrettage.  

Based on the third and the fourth strength theory, Zhu and 
Yang [14] presented an analytic equation for optimum radius of 
elastic-plastic juncture, optr in autofrettage technology. Their 
work presented the influence of autofrettage on stress distribution 
and load-bearing capacity of a cylinder and optimum pressure in 
autofrettage technology was studied. The work by Zhu and Yang 
considers only elastic-prefectly material model which obviously 
is not the case for most of the applications.   

According to work given by Zhu and Yang [14], the optimum 
elaso-plastic radius, optr , and optimum autofrettage presuure, 

optp , are calculated from the relations given below: 
(a) In view of the third strength theory: 

expopt i
y

pr r
�

� �
� � �� �

� �
 (1) 

2 21 1 exp
2

y
opt

y y

p pp p
�

� �

� �� � � �
� � � �� �� � � �� � � �� �� � � �� �

 (2) 

(b) In view of the fourth strength theory: 
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In the present work, the optimization techniques, numerical 
simulation and experiments are employed to predict the optimized 
autofretage radius. SEQ technique is used for optimization purposes. 
A finite element code, is employed for numerical simulations and 
finally, the results are verified by testing a number of closed end 
cylinders at various autofrettage pressures. The results are then 
compared with those given by Zhu and Yang [14] 

2. Analytical relations
The distribution of radial and hoop stresses within the elastic 

region and plastic core can be described as follow: 
For elastic perfectly plastic material: 

In elastic region, a r c� � :
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In plastic region, c r b� � ,
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For elastic-plastic material with linear strain hardening: 
In plastic region, a r c� �  , for an internal pressure iP :
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When the cylinder is pressurized to the autofrettage pressure 
and the pressure is removed, the residual stress distribution across 
the wall of the cylinder can be expressed as follow [15]: 
For elastic-perfectly plastic material: 
Residual stresses in plastic region a r c� � :
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Residual stresses in elastic regionc r b� � :
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For elasto-plastic material: 
Residual stresses in plastic region a r c� � :
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Based on the third and the fourth strength theory, Zhu and 
Yang [14] presented an analytic equation for optimum radius of 
elastic-plastic juncture, optr in autofrettage technology. Their 
work presented the influence of autofrettage on stress distribution 
and load-bearing capacity of a cylinder and optimum pressure in 
autofrettage technology was studied. The work by Zhu and Yang 
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is not the case for most of the applications.   
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In the present work, the optimization techniques, numerical 
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A finite element code, is employed for numerical simulations and 
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For elastic-plastic material with linear strain hardening: 
In plastic region, a r c� �  , for an internal pressure iP :
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When the cylinder is pressurized to the autofrettage pressure 
and the pressure is removed, the residual stress distribution across 
the wall of the cylinder can be expressed as follow [15]: 
For elastic-perfectly plastic material: 
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Residual stresses in elastic regionc r b� � :
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For elasto-plastic material: 
Residual stresses in plastic region a r c� � :
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Residual stresses in elastic regionc r b� � :
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 If the cylinder is loaded again by the internal working 
pressure, by superposing the residual stresses due to autofrettage 
and the working pressure, the final stress distribution in the wall 
of the cylinder will becomes: 
 For elastic-prefectly plastic material: 
Overall stresses in plastic region a r c� � :
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Overall stresses in elastic region c r b� � :
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For elastic-plastic material: 
Overall stresses in plastic region a r c� � :
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 According to Tresca yield criterion, the equivalent stress eq�
can be defined as: 

eq r�� � �� �  (27) 

If the cylinder is intended to remain elastic throughout the 
loading process of the cylinder, then the equivalent stress should 
not exceed the yield stress of the material, i.e.: 
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3. Optimization problem definition 
In the optimization problem, the variables vector is defined as: 

3.  Optimization problem 
definition
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2x c�   is the radius of elasto-plastic junction and 3x b� is the 
outer radius of the cylinder. The objective function, ( )f x , is the 
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that the radial displacement at the inner radius of compound 
cylinder must remain less than a specific value, au .
4- 1x and 3x  have always to be positive and are forced to remain 
within the range 1 2a x a� � .
5- 2x  must be less than the outer radius and greater than the inner 
one.   

The optimization problem can be summarized as follows:  
Minimize:  � �2 2

3 1( )f x x x� �� � � �       Subject to:                           

1 1 2 3 1
g (x ,x ,x ) 0eq yr x

� �
�

� � �

2 1 2 3 2
g (x ,x ,x ) 0eq yr x

� �
�

� � �

3 1 2 3 1
g (x ,x ,x ) 0r ar x

u u
�

� � �

4 1 2 3 1 1g (x ,x ,x ) 0a x� � �

5 1 2 3 1 2g (x ,x ,x ) 0x x� � �

6 1 2 3 2 3g (x ,x ,x ) 0x x� � �

         7 1 2 3 3 2g (x ,x ,x ) 0x a� � �                   

Where, �  is the specific weight of the cylinder.  
 SQP technique [17 & 18] was employed for optimization 
process which was performed using MATLAB software.

4. Material and specimens 
Two materials, aluminum and steel were used for optimization 
purposes. The material’s properties are exactly the same as those 
used by Majzoobi and Ghomi [21].  
 The material’s properties and the geometry of the specimens 
(only aluminum alloy) used for bursting tests were different from 
those used for optimization purposes. Figure 1 illustrates the 
shape of the specimens adopted from the work of Manning       
[19 & 20].  The ratio of inner to outer radii was 2.2, k=b/a=2.2, 
for all specimens.  The material had a yield stress of 

190MPay� � . Figure 1 shows two specimens, one before testing 
and one after bursting. The gauge length of the specimens was 70 
mm for all specimens.   

Fig. 1: Two specimens before and after testing  

5. Optimization results 
The optimization problem defined in section 4 was performed 

for aluminum and steel cylinders with a=0.01 m, b=0.022 m under 
the following conditions: 

Table 1: 
The results for aluminum cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m) rj(opt) (m) 

30 0.0138 0.0129 1.38 0.77 0.0133 
34 0.0144 0.0133 1.44 0.91 0.0139 
38 0.0150 0.0138 1.50 1.06 0.0144 
42 0.0157 0.0142 1.57 1.24 0.0150 
46 0.0163 0.0147 1.63 1.41 0.0156 
50 0.0170 0.0152 1.70 1.60 0.0162 
54 0.0177 0.0157 1.77 1.81 0.0168 
58 0.0184 0.0162 1.84 2.02 0.0175 
62 0.0191 0.0167 1.91 2.25 0.0182 
66 0.0199 0.0173 1.99 2.51 0.0189 
70 0.0206 0.0178 2.06 2.75 0.0196 
74 0.0214 0.0184 2.14 3.04 0.0204 

76.5 0.0219 0.0187 2.19 3.22 0.0209 

(a) elastic-perfectly plastic material: 

The autofrettage pressure varied between 30 to 75.5 MPa for 
aluminum cylinders and between 300 to 600 MPa for steel 
cylinders. From the optimizations, the optimum value of the 
radius of elasto-plastic junction, c, and weight of the cylinder 
were obtained.  The results and their comparison with those 
predicted by analytical approach given by Zhu and Yang [14] are 
summarized in Tables 1 and 2 and illustrated graphically in 
figures 2 & 3 for aluminum and steel, respectively. 
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Residual stresses in elastic regionc r b� � :
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 If the cylinder is loaded again by the internal working 
pressure, by superposing the residual stresses due to autofrettage 
and the working pressure, the final stress distribution in the wall 
of the cylinder will becomes: 
 For elastic-prefectly plastic material: 
Overall stresses in plastic region a r c� � :
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Overall stresses in elastic region c r b� � :
2 2 2 2 2

2 2 2 2 2 2

1[ ln 1
2 1

y
rf rr r

c c b c c
r b r k a b

�
� � �

� �
� � � � � � � � �� �� � �

2 2 2 2

2 2 2 2

1 / 1                        ln 1 ]
1 1

c c b rp
k a b k

� � �
� � � �� �� �� �

 (21) 

2 2 2 2 2

2 2 2 2 2 2

1[ ln 1
2 1

y
f r

c c b c c
r b r k a b� � �

�
� � �

� �
� � � � � � � �� �� � �

2 2 2 2

2 2 2 2

1 / 1                          ln 1 ]
1 1

c c b rp
k a b k

� � �
� � � �� �� �� �

 (22) 

For elastic-plastic material: 
Overall stresses in plastic region a r c� � :
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Overall stresses in elastic region c r b� � :
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 According to Tresca yield criterion, the equivalent stress eq�
can be defined as: 

eq r�� � �� �  (27) 

If the cylinder is intended to remain elastic throughout the 
loading process of the cylinder, then the equivalent stress should 
not exceed the yield stress of the material, i.e.: 

eq r y�� � � �� � �  (28)

3. Optimization problem definition 
In the optimization problem, the variables vector is defined as: 

� � � �1 2 3
TX x x x�

In which 1x a� is the inner radius of the internal cylinder, 

2x c�   is the radius of elasto-plastic junction and 3x b� is the 
outer radius of the cylinder. The objective function, ( )f x , is the 
weight of compound cylinder. The constraints of the problem are 
defined as follow: 
1-

1
1g (X) 0eq yr x

� �
�

� � � . This implies that equivalent stress at 

the inner surface of the cylinder should not exceed the yield 
stress, y� .

2- 2 2
g (X) 0eq yr x

� �
�

� � � . This implies that equivalent stress at 

the outer surface of the cylinder should not exceed the yield 
stress, y� .

3- 3 1
g (X) 0r ar x

u u
�

� � � . This is an optional constraint implying 
that the radial displacement at the inner radius of compound 
cylinder must remain less than a specific value, au .
4- 1x and 3x  have always to be positive and are forced to remain 
within the range 1 2a x a� � .
5- 2x  must be less than the outer radius and greater than the inner 
one.   

The optimization problem can be summarized as follows:  
Minimize:  � �2 2

3 1( )f x x x� �� � � �       Subject to:                           

1 1 2 3 1
g (x ,x ,x ) 0eq yr x

� �
�

� � �

2 1 2 3 2
g (x ,x ,x ) 0eq yr x

� �
�

� � �

3 1 2 3 1
g (x ,x ,x ) 0r ar x

u u
�

� � �

4 1 2 3 1 1g (x ,x ,x ) 0a x� � �

5 1 2 3 1 2g (x ,x ,x ) 0x x� � �

6 1 2 3 2 3g (x ,x ,x ) 0x x� � �

         7 1 2 3 3 2g (x ,x ,x ) 0x a� � �                   

Where, �  is the specific weight of the cylinder.  
 SQP technique [17 & 18] was employed for optimization 
process which was performed using MATLAB software.

4. Material and specimens 
Two materials, aluminum and steel were used for optimization 
purposes. The material’s properties are exactly the same as those 
used by Majzoobi and Ghomi [21].  
 The material’s properties and the geometry of the specimens 
(only aluminum alloy) used for bursting tests were different from 
those used for optimization purposes. Figure 1 illustrates the 
shape of the specimens adopted from the work of Manning       
[19 & 20].  The ratio of inner to outer radii was 2.2, k=b/a=2.2, 
for all specimens.  The material had a yield stress of 

190MPay� � . Figure 1 shows two specimens, one before testing 
and one after bursting. The gauge length of the specimens was 70 
mm for all specimens.   

Fig. 1: Two specimens before and after testing  

5. Optimization results 
The optimization problem defined in section 4 was performed 

for aluminum and steel cylinders with a=0.01 m, b=0.022 m under 
the following conditions: 

Table 1: 
The results for aluminum cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m) rj(opt) (m) 

30 0.0138 0.0129 1.38 0.77 0.0133 
34 0.0144 0.0133 1.44 0.91 0.0139 
38 0.0150 0.0138 1.50 1.06 0.0144 
42 0.0157 0.0142 1.57 1.24 0.0150 
46 0.0163 0.0147 1.63 1.41 0.0156 
50 0.0170 0.0152 1.70 1.60 0.0162 
54 0.0177 0.0157 1.77 1.81 0.0168 
58 0.0184 0.0162 1.84 2.02 0.0175 
62 0.0191 0.0167 1.91 2.25 0.0182 
66 0.0199 0.0173 1.99 2.51 0.0189 
70 0.0206 0.0178 2.06 2.75 0.0196 
74 0.0214 0.0184 2.14 3.04 0.0204 

76.5 0.0219 0.0187 2.19 3.22 0.0209 

(a) elastic-perfectly plastic material: 

The autofrettage pressure varied between 30 to 75.5 MPa for 
aluminum cylinders and between 300 to 600 MPa for steel 
cylinders. From the optimizations, the optimum value of the 
radius of elasto-plastic junction, c, and weight of the cylinder 
were obtained.  The results and their comparison with those 
predicted by analytical approach given by Zhu and Yang [14] are 
summarized in Tables 1 and 2 and illustrated graphically in 
figures 2 & 3 for aluminum and steel, respectively. 

4.  Material and specimens

5.  Optimization results
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Table 2:
The results for steel cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m) rj(opt) (m) 

300 0.0151 0.0138 1.51 3.16 0.0145 
350 0.0162 0.0146 1.62 4.01 0.0154 
400 0.0172 0.0154 1.72 4.83 0.0164 
450 0.0184 0.0162 1.84 5.88 0.0174 
500 0.0195 0.0170 1.95 6.91 0.0186 
550 0.0208 0.0179 2.08 8.20 0.0197 
600 0.0220 0.0188 2.20 9.47 0.0210 

0.0125

0.0145

0.0165

0.0185

0.0205

30 40 50 60 70 80
P (Mpa)

c 
(m

)

Current Zhu&Yang

Fig. 2.Variation of c versus working pressure for aluminum cylinders 
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Fig. 3. Variation of c versus working pressure for steel cylinders 

It can be seen from the tables and the figures that, in the first 
place, c increases as the working pressure increases, and in the 
second place, the average difference between the results obtained 
in this work and those given by Zhu and Yang is only 6.8% for 
aluminum and 7.4% for steel cylinders, respectively.  
(b) elastic-plastic with linear strain hardening: 

The results in this case are summarized in Tables 3 and 4 and 
depicted in figures 4 & 5 for aluminum and steel, respectively. 

Table 3 
The results for aluminum cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m)
rj(opt)
(m) 

30 0.0138 0.0129 1.38 0.77 0.0133 
34 0.0144 0.0134 1.44 0.91 0.0139 
38 0.0150 0.0138 1.50 1.06 0.0144 
42 0.0156 0.0143 1.56 1.22 0.0150 
46 0.0163 0.0148 1.63 1.41 0.0156 
50 0.0169 0.0152 1.69 1.57 0.0162 
54 0.0176 0.0158 1.76 1.78 0.0168 
58 0.0183 0.0163 1.83 1.99 0.0175 
62 0.0190 0.0168 1.90 2.21 0.0182 
66 0.0197 0.0173 1.97 2.44 0.0189 
70 0.0204 0.0179 2.04 2.68 0.0196 
74 0.0212 0.0184 2.12 2.96 0.0204 
78 0.0219 0.0190 2.19 3.22 0.0212 

Table 4 
The results for steel cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m)
rj(opt)
(m) 

300 0.0151 0.0139 1.51 3.16 0.0145 
350 0.0161 0.0146 1.61 3.93 0.0154 
400 0.0172 0.0154 1.72 4.83 0.0164 
450 0.0183 0.0162 1.83 5.79 0.0174 
500 0.0194 0.0171 1.94 6.82 0.0186 
550 0.0206 0.0180 2.06 8.00 0.0197 
600 0.0218 0.0189 2.18 9.25 0.0210 
610 0.0220 0.0190 2.20 9.47 0.0213 

0.0125

0.0145

0.0165

0.0185

0.0205

300 350 400 450 500 550 600
P (Mpa)

c 
(m

)

Current Zhu&Yang

Fig. 4.Variation of c versus working pressure for aluminum cylinders 

Again, the difference between the results obtained in this 
work and those given by Zhu and Yang is only 6.4% for 
aluminum and 7.1% for steel cylinders, respectively. Therefore, it 
may be concluded that (a) there is not significant difference 

between elastic perfectly plastic and elastic plastic with strain 
hardening material models for prediction of optimum radius of 
elastic plastic junction in autofrettage process and (b) the 
analytical results given by Zhu and Yang is confirmed by 
optimization results obtained in this investigation. 
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Fig. 5.Variation of c versus working pressure for steel cylinders 

6. Numerical results 
Single cylinders with the dimensions; a=0.1 m, b=0.2 m and 

an elastic perfectly plastic material’s model with 800 y MPa� �

were used for numerical modeling. The two pressure limits  1yP

and 2yP  can be computed as follows [1 & 21]: 

� �2 2
1

800(1 1/ ) 1 1 2 347 MPa
3 3
y

yP k
�

� � � � �

2 ( ) 800ln(2) 555 MPay yP Ln k�� � �

The cylinders were subjected to autofrettage pressures ranging 
from 350 MPa to 650 MPa. After removing the autofrettage 
pressure (AP), the cylinders were subjected to the working 
pressures of 100, 200 and 400 MPa. From the numerical 
simulations, the curve of von-Mises stress distribution was 
obtained for each autofrettage and working pressure (WP). From 
the curve, the value and the position of maximum von-Mises 
(MVS) stress were extracted. This stress and its position were 
then plotted versus autofrettage pressure for each working 
pressure. The results are shown in figure 6.  

It is observed that for each working pressure, the MVS 
remains constant up to an autofrettage pressure which is nearly 
equal to 1yP . The curve then begins to decline to a certain point 
thereafter begins to rise or remain constant. It can be seen that for 
all WPs, the rising portion of the curves end at a point which is 
nearly equal to 2yp .

From the numerical results, it can be concluded that: (i) the 
MVS depends on the working pressure and for any WP, the best 
AP lies between 1yP  and 2yp ; (ii) for autofrettage pressures 

lower than 1yP  and higher than 2yp the MVS remains 
unchanged); (iii) the position of MVS moves towards the outer 
radius as AP increases, and for autofrettage pressures higher than 
Py2 does not change 
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Fig. 6. Variation of maximum von-Mises stress versus autofrettage 
pressure at three working pressure  

Now, Let examine the accuracy of equations for computation 
of optimum autofrettage pressure (Eq. 4) given by Zhu and Yang. 
For the material used in the numerical simulations, 

800 y MPa� � , and the working pressures, 100, 200 and 400 
MPa, the optimum autofrettage pressures calculated from 
equation 4 and obtained from figure 6 are given in Table 5. 

Table 5 
Working pressure, p 100 200 400 

optp (equation 4) 113 258 714 

optp (figure 6) 440 450 550 

The results given in Table 5 clearly  show a distinct 
discrepancy between the optimum pressures predicteed by Zhu 
and Yang and the numerical results obtained in this work.  As 
seen in the Table 5, the numerical results for optimum 
autofrettage pressures vary between 1 347 MPayP �  and 

2 555 MPayP �  as calculated above.  This is more consistent with 
experimental results given in the next section.  

Fig. 7. Variation of maximum von-Mises stress versus autofrettage 
pressure two different material models 
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Table 2:
The results for steel cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m) rj(opt) (m) 

300 0.0151 0.0138 1.51 3.16 0.0145 
350 0.0162 0.0146 1.62 4.01 0.0154 
400 0.0172 0.0154 1.72 4.83 0.0164 
450 0.0184 0.0162 1.84 5.88 0.0174 
500 0.0195 0.0170 1.95 6.91 0.0186 
550 0.0208 0.0179 2.08 8.20 0.0197 
600 0.0220 0.0188 2.20 9.47 0.0210 
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0.0145

0.0165
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Fig. 2.Variation of c versus working pressure for aluminum cylinders 
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Fig. 3. Variation of c versus working pressure for steel cylinders 

It can be seen from the tables and the figures that, in the first 
place, c increases as the working pressure increases, and in the 
second place, the average difference between the results obtained 
in this work and those given by Zhu and Yang is only 6.8% for 
aluminum and 7.4% for steel cylinders, respectively.  
(b) elastic-plastic with linear strain hardening: 

The results in this case are summarized in Tables 3 and 4 and 
depicted in figures 4 & 5 for aluminum and steel, respectively. 

Table 3 
The results for aluminum cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m)
rj(opt)
(m) 

30 0.0138 0.0129 1.38 0.77 0.0133 
34 0.0144 0.0134 1.44 0.91 0.0139 
38 0.0150 0.0138 1.50 1.06 0.0144 
42 0.0156 0.0143 1.56 1.22 0.0150 
46 0.0163 0.0148 1.63 1.41 0.0156 
50 0.0169 0.0152 1.69 1.57 0.0162 
54 0.0176 0.0158 1.76 1.78 0.0168 
58 0.0183 0.0163 1.83 1.99 0.0175 
62 0.0190 0.0168 1.90 2.21 0.0182 
66 0.0197 0.0173 1.97 2.44 0.0189 
70 0.0204 0.0179 2.04 2.68 0.0196 
74 0.0212 0.0184 2.12 2.96 0.0204 
78 0.0219 0.0190 2.19 3.22 0.0212 

Table 4 
The results for steel cylinders 

Pi
(MPa) b(m) c(m) k W

(kg/m)
rj(opt)
(m) 

300 0.0151 0.0139 1.51 3.16 0.0145 
350 0.0161 0.0146 1.61 3.93 0.0154 
400 0.0172 0.0154 1.72 4.83 0.0164 
450 0.0183 0.0162 1.83 5.79 0.0174 
500 0.0194 0.0171 1.94 6.82 0.0186 
550 0.0206 0.0180 2.06 8.00 0.0197 
600 0.0218 0.0189 2.18 9.25 0.0210 
610 0.0220 0.0190 2.20 9.47 0.0213 
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Fig. 4.Variation of c versus working pressure for aluminum cylinders 

Again, the difference between the results obtained in this 
work and those given by Zhu and Yang is only 6.4% for 
aluminum and 7.1% for steel cylinders, respectively. Therefore, it 
may be concluded that (a) there is not significant difference 

between elastic perfectly plastic and elastic plastic with strain 
hardening material models for prediction of optimum radius of 
elastic plastic junction in autofrettage process and (b) the 
analytical results given by Zhu and Yang is confirmed by 
optimization results obtained in this investigation. 
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Fig. 5.Variation of c versus working pressure for steel cylinders 

6. Numerical results 
Single cylinders with the dimensions; a=0.1 m, b=0.2 m and 

an elastic perfectly plastic material’s model with 800 y MPa� �

were used for numerical modeling. The two pressure limits  1yP

and 2yP  can be computed as follows [1 & 21]: 

� �2 2
1

800(1 1/ ) 1 1 2 347 MPa
3 3
y

yP k
�

� � � � �

2 ( ) 800ln(2) 555 MPay yP Ln k�� � �

The cylinders were subjected to autofrettage pressures ranging 
from 350 MPa to 650 MPa. After removing the autofrettage 
pressure (AP), the cylinders were subjected to the working 
pressures of 100, 200 and 400 MPa. From the numerical 
simulations, the curve of von-Mises stress distribution was 
obtained for each autofrettage and working pressure (WP). From 
the curve, the value and the position of maximum von-Mises 
(MVS) stress were extracted. This stress and its position were 
then plotted versus autofrettage pressure for each working 
pressure. The results are shown in figure 6.  

It is observed that for each working pressure, the MVS 
remains constant up to an autofrettage pressure which is nearly 
equal to 1yP . The curve then begins to decline to a certain point 
thereafter begins to rise or remain constant. It can be seen that for 
all WPs, the rising portion of the curves end at a point which is 
nearly equal to 2yp .

From the numerical results, it can be concluded that: (i) the 
MVS depends on the working pressure and for any WP, the best 
AP lies between 1yP  and 2yp ; (ii) for autofrettage pressures 

lower than 1yP  and higher than 2yp the MVS remains 
unchanged); (iii) the position of MVS moves towards the outer 
radius as AP increases, and for autofrettage pressures higher than 
Py2 does not change 
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Fig. 6. Variation of maximum von-Mises stress versus autofrettage 
pressure at three working pressure  

Now, Let examine the accuracy of equations for computation 
of optimum autofrettage pressure (Eq. 4) given by Zhu and Yang. 
For the material used in the numerical simulations, 

800 y MPa� � , and the working pressures, 100, 200 and 400 
MPa, the optimum autofrettage pressures calculated from 
equation 4 and obtained from figure 6 are given in Table 5. 

Table 5 
Working pressure, p 100 200 400 

optp (equation 4) 113 258 714 

optp (figure 6) 440 450 550 

The results given in Table 5 clearly  show a distinct 
discrepancy between the optimum pressures predicteed by Zhu 
and Yang and the numerical results obtained in this work.  As 
seen in the Table 5, the numerical results for optimum 
autofrettage pressures vary between 1 347 MPayP �  and 

2 555 MPayP �  as calculated above.  This is more consistent with 
experimental results given in the next section.  

Fig. 7. Variation of maximum von-Mises stress versus autofrettage 
pressure two different material models 

6.  Numerical results
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 The results for elastic-pastic material with linear strain 
hardening are plotted in figure 7 for working pressure of 200 
MPa. As the figure suggests, the two material models, yield 
nearly the same results for the minimum von-Mises stress and 
differ only at the autofrettage pressures higher than 2yp  which 
are not of concern in this work. This trend was observeed for 
other working pressures.  

7. Experimental results 
 The experiments were carried out using a high pressure pump  
with a pressure capacity ranging from 1 to 275 MPa (40000 psi). 
The diag gauge of the pump had a minimum division of  3.5 MPa. 
Therefore an error of about 1.75 MPa� was expected for each 
reading. The bursting pressure for autofrettaged cylinders are 
given in Table 6. The results have been adopted from the work by 
Majzoobi et al [2]. In order to see the differences more clearly, 
the pressures are given in psi in parenthesis.  

Table 6  
(the values in parenthesis are in psi) 
Autofrettage 

pressure 
- 155.1 

(22500)
124.1

(18000)
124.1

(18000)
137.9

(20000)
117.2

(17000)
Bursting
pressure 

148.2
(21500)

151.7
(22000)

155.1
(22500)

155.1
(22500)

162.0
(23500)

149.6
(21700)

The values of 1yP  and 2yp as calculated from equations quoted 

above, are 1 115.2  (16700 psi)yP MPa�  and 2 150  (21700 psi)yp MPa� .
It can be observed from Table 6 that the bursting pressure 
increases as autofrettage pressure rises but remains less than 2yp .

However, when the pressure exceeds 2yp , the bursting pressure 
begins to decrease. This is quite consistent with the results 
extracted from figure 6.  As it was explained in section 6, the 
minimum von-Mises stress lies between 1yP  and 2yp . As 
working pressure increases, autofrettage pressure also increases 
and for high working pressures it approaches 2yp .

8. Conclusions 
From the optimization, numerical and experimental results the 

following conclusion can be derived: 
1- The optimum radius of elastic-plastic junction in autofrettaged 
cylinder does not differ significantly for elastic-perfectly plastic 
material compared with those obtained using an elastic-plastic 
with strain hardening material’s model. 
2- The results verify the analytical solution for optimizing the 
radius of elastic-plastic junction given by Zhu and Yang. 
3- The optimum pressure predicted by Zhu and Yang are 
significantly different from the numerical predictions in this work.  
4- The numerical results revealed that the optimum autofrettage 
pressure is obtained when von-Mises equivalent stress across the 
wall of the cylinder attains its minimum value.  
5- The numerical predictions are verified by experimental results.  
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other working pressures.  

7. Experimental results 
 The experiments were carried out using a high pressure pump  
with a pressure capacity ranging from 1 to 275 MPa (40000 psi). 
The diag gauge of the pump had a minimum division of  3.5 MPa. 
Therefore an error of about 1.75 MPa� was expected for each 
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The values of 1yP  and 2yp as calculated from equations quoted 

above, are 1 115.2  (16700 psi)yP MPa�  and 2 150  (21700 psi)yp MPa� .
It can be observed from Table 6 that the bursting pressure 
increases as autofrettage pressure rises but remains less than 2yp .

However, when the pressure exceeds 2yp , the bursting pressure 
begins to decrease. This is quite consistent with the results 
extracted from figure 6.  As it was explained in section 6, the 
minimum von-Mises stress lies between 1yP  and 2yp . As 
working pressure increases, autofrettage pressure also increases 
and for high working pressures it approaches 2yp .
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From the optimization, numerical and experimental results the 

following conclusion can be derived: 
1- The optimum radius of elastic-plastic junction in autofrettaged 
cylinder does not differ significantly for elastic-perfectly plastic 
material compared with those obtained using an elastic-plastic 
with strain hardening material’s model. 
2- The results verify the analytical solution for optimizing the 
radius of elastic-plastic junction given by Zhu and Yang. 
3- The optimum pressure predicted by Zhu and Yang are 
significantly different from the numerical predictions in this work.  
4- The numerical results revealed that the optimum autofrettage 
pressure is obtained when von-Mises equivalent stress across the 
wall of the cylinder attains its minimum value.  
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