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ABSTRACT

Purpose: The purpose is to overcome numerical problems arising in structural instability numerical 
computations for equilibrium configurations corresponding to increasing loads on structures having points of 
instability or more generally large non linearity.
Design/methodology/approach: The used numerical methodology was the finite element method with the 
particular technique of non linear transient dynamic analysis. In such way dynamic equilibrium paths, which are 
able to lead to required corresponding static ones, can be obtained.
Findings: A methodology to develop this kind of analyses as well as a procedure to set some initial parameters 
and to check the accuracy of the solution have been investigated and pointed out.
Research limitations/implications: In the future it will be possible to apply the investigated numerical 
procedure to other practical cases.
Originality/value: We have overcome the limitations in the use of the Newton-Raphson classical method when 
load control conditions are considered. We also emphasise the practical limits of the Arc Length technique, 
which requires consistent formulations of the element stiffness matrix in non-linear field; this kind of high 
precision is often not available in the common FE codes.
Keywords: Arc-length; Buckling; Post-buckling; Quasi-static analysis

1. Introduction 
Nowadays, especially in the aeronautical field thinner and 

thinner panels are used thanks to the availability of very stiff 
materials by which lighter panels for fuselages can be obtained. 
This geometrical characterization points out the problem of 
buckling and structural static equilibrium. Some previous works 
[1-29], for example, deal with the problem of non-linear static 
equilibrium taking account of large displacements for thin 
cylindrical panels in composite material under axial, shear or 
torsional loads, or material nonlinearity. 

The difficulty in determining critical points and reaching 
equilibrium points on non-stable paths was studied and solved by 
Wempner and Riks [30-32] in the seventies by using the Arc 
Length technique, which at present is implemented in various 
finite element codes commercially available. 

The present numerical work deals with the peculiar 
characteristics of stability and convergence of the Arc Length 
method and, in particular, with the algorithms available in 
commercial codes, such as ANSYS and NASTRAN, by which 
numerical evaluations have been performed. An in-house code 
[33] has been developed in order to better investigate the method 
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and its procedural parameters set-up, by means of non-linear 
analyses of beam structures. These results are successively 
compared with those obtained by using the aforesaid commercial 
codes in which these parameters are often not defined by users. 
Moreover this study points out the possibility to obtain points of 
static equilibrium by using the classical FEM algorithms utilized 
in dynamical solutions [34, 35]. 

With this assumption we consider the structure, whose 
degrees of freedom are provided with opportunely chosen 
damping factors, under loads slowly increasing over a wide 
interval of time, so that the quasi-static equilibrium path can be 
confused with the static path determined in the stable intervals. In 
this way we can reach equilibrium points which otherwise would 
be difficult to obtain through static analysis. 

Finally we show the influence of the parameters set-up on the 
dynamic solutions and suggest some criteria to determine, with 
required accuracy, the quasi-static equilibrium path, also reducing 
the computational effort. 

2. Static equilibrium in instability 
condition

The problem of static equilibrium in geometrically non-linear 
field within a FEM procedure leads to the following governing 
equation

�(u)=P (1) 

which expresses the balance of the external forces vector P with the 
nodal forces �(u), whose dependence on displacements u is non-
linear. The above equilibrium equation is usually solved by Newton-
Raphson (NR) or derived methods. This well known technique 
consists in the solution of a series of linear equations as follows 

K(ui)�ui+1 =P-�(ui), (2) 

where ui represents the i-th approximation of the solution u; K(ui)
is the matrix containing the derivatives of the internal forces 
vector �(u) with reference to each term of the vector u, evaluated 
in the point ui; finally, P-�(ui), are the so called residual forces 
which determine the increment �ui+1 of displacements. At every 
iteration the vector ui is updated as ui+1 = ui + �ui+1 and the 
other derived quantities are consequentially changed. We consider 
that the convergence is recovered when the residual forces 
become smaller than an assigned value; if the matrix K of 
derivatives, which coincides with the tangent stiffness of the 
structure, holds his positive definitiveness, the procedure is 
convergent and the convergence is quadratic. 

The Arc Length (AL) method, originally introduced by Wempner 
[30] and Riks [31, 32], and treated, among others, by Crisfield [36-40] 
is apt to follow equilibrium paths which offer unstable points, where 
it is not possible to find solutions of eq. (1) with NR techniques. The 
AL method consists in the solution of the non-linear incremental 
system given by the following equations 

G = �(u + �u) - (� + ��)P* = 0 (3a) 

g = �uT�u + �2��2 = �2 ,  (3b) 

where the vector (u; �) represents the currently calculated 
equilibrium point, � is the reference load P* multiplier and � an 
opportunely chosen scale factor. The last equation requires that 
the vector (�u; ���) norm gets a fixed value �; this means that 
the point (u + �u; � + ��) belongs to a quadratic hypersurface 
centered in (u; �). The system of eq. (3), provided that the 
hypersurface parameter � is small enough, is stable and it is 
possible to obtain the solution by means of NR algorithms also for 
paths describing physically unstable equilibrium. It is appropriate 
and sometimes necessary to employ this technique; for example, 
in presence of a limit point in which the stiffness matrix is 
singular, it would be necessary to gradually reduce the load step 
by using the conventional NR technique. In this case the load 
increment is given by the quantity ��P*, which decreases 
automatically when the limit point is approximated; this is due to 
the constraint imposed by the eq. (3b) at the same time without 
influencing neither the stability of the algorithm nor the fastness of 
convergence. When it is necessary to overcome an unstable zone to 
verify the presence of further stable branches along the whole 
equilibrium path, the use of AL could be necessary if the distance 
between two stable branches would make impossible or too difficult 
the convergence of the eq. (1). Anyway the use of this technique 
becomes absolutely necessary if, for any reason, it is relevant to 
know the behaviour of an unstable piece of equilibrium path. 

3. Resolutive techniques for the Arc-
Length method

The Newton-Raphson method applied to the system of eq. (3) 
leads to the following equations 
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The results are the increments �ui+1 e ��i+1 corresponding 
to the i-th approximation of the solution. Even if the stiffness 
matrix of the structure is singular, the matrix of derivatives is, 
generally, non-singular; this property allows the iterative 
algorithm to hold its convergence capabilities also on unstable 
segments of the equilibrium path. But, unlike the matrix K, it is 
neither symmetric nor banded; in order to avoid this 
inconvenient, which does not allow the usage of standard 
solution processors usually employed for structural analysis 
with FEM, we can resort, for example, to the technique 
suggested by Crisfield. From the eq. (4) the displacements 
increment is obtained in the form 

�ui+1 = -K -1(u + �ui)Gi +��i+1(K -1(u + �ui)P*) =

= �uI + �� i+1�uII . (5) 

By using the second of eq. (3) written for the two successive 
iterations i and i+1, and imposing that successive approximations 
of the solution  lie on the hypersurface , we obtain the expression 

(�u i+1)T�u i+1 + �2(�� i+1)2 = 

= (�u i)T�u i + �2(�� i)2 = �2 (6) 

then, after the substitution of �u i+1 e �� i+1 respectively given 
by the relations 

�u i+1 = �u i + �uI + �� i+1�uII
�

�� i+1 = �� i + �� i+1 (7) 

we get the following quadratic expression in the variable ��i+1,
which makes it possible to evaluate definitively the increment of 
the displacement vector 

a(�� i+1)2 + b�� i+1 + c = 0 (8) 

where

a = (�uII)T�uII + �2

b = 2((�ui + �uI)T�uII + �2���i)

c = (�ui + �uI)T(�ui + �uI) + �2���i - �2.

By using this technique the operations of factorization on the 
augmented matrix do not have to be performed and then the 
computational effort for the single iteration is not so different 
from the one which is necessary to solve only the eq. (1). 
An approximate solution technique [41] consists in evaluating 
��i+1 by using the following linear expression 
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where the scalar quantity �i may be defined in some different ways. 
The simplest criterion is to impose �i = 0. In this way the 
increment ��i+1 is defined by the equivalent expression 

(�u i; ��� i) � (�u i+1; ��� i+1) = 0, 

that is an orthogonal relationship between the (i+1)-th increment 
vector and the i-th approximation of the incremental solution vector. 
Such an easier solution does not oblige us to choose at every 
iteration, between the two solutions of eq. (8), the one leading 
towards the right direction of the equilibrium curve. 

On the contrary, it is less stable than the previous one, obliging 
sometimes to reduce considerably the value of the parameter �.
Actually the evaluation of the increment of the load parameter 
according to the eq. (9), without considering exactly the eq. (3b), does 
not constrain the i-th approximation of the equilibrium point to lie on 
the aforesaid hypersurface; in this way it is possible, with the 

subsequent iterations, that the norm of the vector (�u; ���) becomes 
also very different from the initial value �, causing the partial loss of 
stability benefit obtainable by the Arc Length technique. 
By writing the constraint (3b) in the following equivalent way 

g’ = (�uT�u + �2��2) (1/2) = � ,

the corresponding incremental equation is written 
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by which we finally obtain the increment 
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that has the same form of eq. (9). 
This technique leads to an equilibrium solution close to the 

one derived from the Crisfield algorithm with the advantage of 
using a linear expression for the increment. 

For the following application examples it has been applied, 
among the others, an “in-house” solver based on the described 
technique. 

4. Numerical investigation on the Arc 
Length method 

Some analyses of simple structures have been made whose 
equilibrium paths show unstable zones, by using in these cases the 
finite elements code ANSYS 5.7 and the aforesaid in house code. 
The structure of Fig. 1, whose SPAR elements present axial 
stiffness only, is provided with only two degrees of freedom and 
its equilibrium path can be calculated also analytically according 

Fig. 1. Simple snap-back or snap-through schema. to the 
following parametric expression referred to the x direction 

2.  Static equilibrium in 
instability condition

3.  Resolutive techniques for 
the Arc-Length method
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and its procedural parameters set-up, by means of non-linear 
analyses of beam structures. These results are successively 
compared with those obtained by using the aforesaid commercial 
codes in which these parameters are often not defined by users. 
Moreover this study points out the possibility to obtain points of 
static equilibrium by using the classical FEM algorithms utilized 
in dynamical solutions [34, 35]. 

With this assumption we consider the structure, whose 
degrees of freedom are provided with opportunely chosen 
damping factors, under loads slowly increasing over a wide 
interval of time, so that the quasi-static equilibrium path can be 
confused with the static path determined in the stable intervals. In 
this way we can reach equilibrium points which otherwise would 
be difficult to obtain through static analysis. 

Finally we show the influence of the parameters set-up on the 
dynamic solutions and suggest some criteria to determine, with 
required accuracy, the quasi-static equilibrium path, also reducing 
the computational effort. 

2. Static equilibrium in instability 
condition

The problem of static equilibrium in geometrically non-linear 
field within a FEM procedure leads to the following governing 
equation

�(u)=P (1) 

which expresses the balance of the external forces vector P with the 
nodal forces �(u), whose dependence on displacements u is non-
linear. The above equilibrium equation is usually solved by Newton-
Raphson (NR) or derived methods. This well known technique 
consists in the solution of a series of linear equations as follows 

K(ui)�ui+1 =P-�(ui), (2) 

where ui represents the i-th approximation of the solution u; K(ui)
is the matrix containing the derivatives of the internal forces 
vector �(u) with reference to each term of the vector u, evaluated 
in the point ui; finally, P-�(ui), are the so called residual forces 
which determine the increment �ui+1 of displacements. At every 
iteration the vector ui is updated as ui+1 = ui + �ui+1 and the 
other derived quantities are consequentially changed. We consider 
that the convergence is recovered when the residual forces 
become smaller than an assigned value; if the matrix K of 
derivatives, which coincides with the tangent stiffness of the 
structure, holds his positive definitiveness, the procedure is 
convergent and the convergence is quadratic. 

The Arc Length (AL) method, originally introduced by Wempner 
[30] and Riks [31, 32], and treated, among others, by Crisfield [36-40] 
is apt to follow equilibrium paths which offer unstable points, where 
it is not possible to find solutions of eq. (1) with NR techniques. The 
AL method consists in the solution of the non-linear incremental 
system given by the following equations 

G = �(u + �u) - (� + ��)P* = 0 (3a) 

g = �uT�u + �2��2 = �2 ,  (3b) 

where the vector (u; �) represents the currently calculated 
equilibrium point, � is the reference load P* multiplier and � an 
opportunely chosen scale factor. The last equation requires that 
the vector (�u; ���) norm gets a fixed value �; this means that 
the point (u + �u; � + ��) belongs to a quadratic hypersurface 
centered in (u; �). The system of eq. (3), provided that the 
hypersurface parameter � is small enough, is stable and it is 
possible to obtain the solution by means of NR algorithms also for 
paths describing physically unstable equilibrium. It is appropriate 
and sometimes necessary to employ this technique; for example, 
in presence of a limit point in which the stiffness matrix is 
singular, it would be necessary to gradually reduce the load step 
by using the conventional NR technique. In this case the load 
increment is given by the quantity ��P*, which decreases 
automatically when the limit point is approximated; this is due to 
the constraint imposed by the eq. (3b) at the same time without 
influencing neither the stability of the algorithm nor the fastness of 
convergence. When it is necessary to overcome an unstable zone to 
verify the presence of further stable branches along the whole 
equilibrium path, the use of AL could be necessary if the distance 
between two stable branches would make impossible or too difficult 
the convergence of the eq. (1). Anyway the use of this technique 
becomes absolutely necessary if, for any reason, it is relevant to 
know the behaviour of an unstable piece of equilibrium path. 

3. Resolutive techniques for the Arc-
Length method

The Newton-Raphson method applied to the system of eq. (3) 
leads to the following equations 
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The results are the increments �ui+1 e ��i+1 corresponding 
to the i-th approximation of the solution. Even if the stiffness 
matrix of the structure is singular, the matrix of derivatives is, 
generally, non-singular; this property allows the iterative 
algorithm to hold its convergence capabilities also on unstable 
segments of the equilibrium path. But, unlike the matrix K, it is 
neither symmetric nor banded; in order to avoid this 
inconvenient, which does not allow the usage of standard 
solution processors usually employed for structural analysis 
with FEM, we can resort, for example, to the technique 
suggested by Crisfield. From the eq. (4) the displacements 
increment is obtained in the form 

�ui+1 = -K -1(u + �ui)Gi +��i+1(K -1(u + �ui)P*) =

= �uI + �� i+1�uII . (5) 

By using the second of eq. (3) written for the two successive 
iterations i and i+1, and imposing that successive approximations 
of the solution  lie on the hypersurface , we obtain the expression 

(�u i+1)T�u i+1 + �2(�� i+1)2 = 

= (�u i)T�u i + �2(�� i)2 = �2 (6) 

then, after the substitution of �u i+1 e �� i+1 respectively given 
by the relations 

�u i+1 = �u i + �uI + �� i+1�uII
�

�� i+1 = �� i + �� i+1 (7) 

we get the following quadratic expression in the variable ��i+1,
which makes it possible to evaluate definitively the increment of 
the displacement vector 

a(�� i+1)2 + b�� i+1 + c = 0 (8) 

where

a = (�uII)T�uII + �2

b = 2((�ui + �uI)T�uII + �2���i)

c = (�ui + �uI)T(�ui + �uI) + �2���i - �2.

By using this technique the operations of factorization on the 
augmented matrix do not have to be performed and then the 
computational effort for the single iteration is not so different 
from the one which is necessary to solve only the eq. (1). 
An approximate solution technique [41] consists in evaluating 
��i+1 by using the following linear expression 

IITii

ITii
i

)(
)(

uu
uu
���

����
���

��
��

2
1  (9) 

where the scalar quantity �i may be defined in some different ways. 
The simplest criterion is to impose �i = 0. In this way the 
increment ��i+1 is defined by the equivalent expression 

(�u i; ��� i) � (�u i+1; ��� i+1) = 0, 

that is an orthogonal relationship between the (i+1)-th increment 
vector and the i-th approximation of the incremental solution vector. 
Such an easier solution does not oblige us to choose at every 
iteration, between the two solutions of eq. (8), the one leading 
towards the right direction of the equilibrium curve. 

On the contrary, it is less stable than the previous one, obliging 
sometimes to reduce considerably the value of the parameter �.
Actually the evaluation of the increment of the load parameter 
according to the eq. (9), without considering exactly the eq. (3b), does 
not constrain the i-th approximation of the equilibrium point to lie on 
the aforesaid hypersurface; in this way it is possible, with the 

subsequent iterations, that the norm of the vector (�u; ���) becomes 
also very different from the initial value �, causing the partial loss of 
stability benefit obtainable by the Arc Length technique. 
By writing the constraint (3b) in the following equivalent way 

g’ = (�uT�u + �2��2) (1/2) = � ,

the corresponding incremental equation is written 
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by which we finally obtain the increment 
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that has the same form of eq. (9). 
This technique leads to an equilibrium solution close to the 

one derived from the Crisfield algorithm with the advantage of 
using a linear expression for the increment. 

For the following application examples it has been applied, 
among the others, an “in-house” solver based on the described 
technique. 

4. Numerical investigation on the Arc 
Length method 

Some analyses of simple structures have been made whose 
equilibrium paths show unstable zones, by using in these cases the 
finite elements code ANSYS 5.7 and the aforesaid in house code. 
The structure of Fig. 1, whose SPAR elements present axial 
stiffness only, is provided with only two degrees of freedom and 
its equilibrium path can be calculated also analytically according 

Fig. 1. Simple snap-back or snap-through schema. to the 
following parametric expression referred to the x direction 

4.  Numerical investigation on 
the Arc Length method
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FB = -K(l1(uB)-l1(0))cos(�(uB)) = FA = F 

uA = uB + F/Km (11) 

where l1(uB) = (L2 + (uB - L)2)(1/2) is the current length of the 
initially inclined bar, cos(�(uB)) = (L - uB)/l1(uB) the projection 
of the same bar on the x axis, FA and FB the nodal forces in 
direction x and uA and uB the corresponding displacements. 

The cylindrical shell whose characteristics are shown in Fig. 
2, has been discretised by using quadratic shell elements available 
in the ANSYS library limiting, for simplicity sake, the analysis to 
a quarter of the structure. The straight sides have all the d.o.f. ’s 
constrained except the rotations around the direction parallel to 
the cylinder axis. This kind of behaviour of the examined 
structure has been numerically evaluated, for different values of 
the shell thickness, by Crisfield [36] and Surana [42]. 

Fig. 2. Cylindrical shell with unstable behaviour [36] 

Finally, the structure shown in Fig. 3, is made up of beam 
elements with square section and is constrained and loaded just 
like the previous one. 

Fig. 3. Beam-made shell with unstable behaviour [33] 

The equilibrium paths of the first analyzed structure (Figs. 4 
and 5) always show a snap-through, when the ratio Km/K
between the rod stiffness changes, and a contemporary snap-back 
might be present. The latter possibility occurs when Km/K
becomes lower than �2-1, as the analytical expression (11) of the 
same path shows. 

The analysis by finite elements with the Arc-Length technique 
implemented in the ANSYS code reveals more and more 
convergence difficulties when this ratio gets smaller. It has been 
found that, for the analyzed structure �max is a crucial parameter 
for the convergence. For Km/K = 1 (Fig. 4) the snap-back does 
not take place and the convergence is reached by assuming �max
less than the one corresponding to an initial increment of the load 
multiplier � equal to about 1/20; on the contrary if the ratio Km/K
= 0.28 (Fig. 5) it is necessary, in order to recover the whole 
equilibrium path without inversion of direction, to set up the 
initial increment of ��equal at most to 1/2000, because the 
algorithm becomes unstable for bigger load steps. 

Fig. 4. Equilibrium path of the first schema without snap-back 

The cylindrical shell structure presents a behaviour strongly 
influenced by the thickness. When the thickness is t=12.7 mm 
(Fig. 6) the case may be solved by setting up the displacement 
increment of the central node A and then verifying the reaction; 
but if we want to impose directly the force, it is necessary to use 
the Arc Length method owing to the presence of snap-through. In 
this second case we can identify, without any relevant difficulty, 
the equilibrium path with a large possibility to choose the initial 
parameters. If the shell thickness is t=6.35 mm (Fig. 7) the use of 
Arc-length method is compulsory owing to the presence of the 
snap-back. In this case the choice of the calculation options, and 
in particular of the initial value of �, �0, and the maximum 
allowed value �max, greatly influences the convergence of the 
solution, even if it has been reached without too many difficulties. 
The results shown in the Figures are in good agreement with those 
presented in [36] and [39]. 

Fig. 5. Equilibrium path of the first schema with snap-back 

The equilibrium paths of the third kind of structure (Figs. 8 - 
11) show a qualitative behaviour very similar to that of the shell. 
Also in this case, when the geometrical parameter l diminishes, 
we proceed from easily identified paths with only snap through to 
paths with characteristics of more difficult numerical convergence 
which in addition present snap-back or quite “curling”. 

For l = 16 mm the analysis does not present any difficulty and 
the convergence may be reached by large field of initial 
parameters variation. If we put l = 9 mm we can point out the 
presence of a marked snap-back. In this case the difficulties of the 
analysis convergence are certainly higher by using the ANSYS 
code: only by setting up a load step number included between 90 
and 110 we can redraw the entire equilibrium curve. If the step 
number is higher than 110 the return to the already evaluated path 
occurs; but if the mentioned number is less than 90 the instability 
of the iterative procedure appears with an untimely jump on the 
second stable branch as soon as the trend towards the snap-back 
effect starts to be considerable. Besides, also in the case in which 
the critical zone is overcome, the equilibrium points are not 
evaluated in succession along the curve, but they are the results of 
numerous changes of direction which stop only after many load 
steps, allowing in this way to go on following the path. 

By reducing the value of l (Figs.10 and 11), in spite of 
numerous tests performed varying each initial parameter, the 
ANSYS solver has not been able to overcome the first snap-back. 
In some cases, by adequately increasing the number of load steps, 
we can anyway obtain the convergence; but as this problem 
involves a number of dof’s equal about to fifty and the number of 
necessary steps is estimated to be of magnitude order of hundreds 
of thousands it is difficult to get results in reasonable time. 

The plots related to this kind of structure also show 
equilibrium paths evaluated by the in-house solver. The 
elaborated solver, also endowed with the ability of the load step 
agreement to the curvature of the equilibrium path, presents the 
best stability qualities being able to point out, without any 
difficulty and with a reduced number of load steps complicated 
paths just like those shown in Figs. 10 and 11. 

Fig. 6. Equilibrium path of a thick cylindrical shell 

Fig. 7. Equilibrium path of a thin cylindrical shell 
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FB = -K(l1(uB)-l1(0))cos(�(uB)) = FA = F 

uA = uB + F/Km (11) 

where l1(uB) = (L2 + (uB - L)2)(1/2) is the current length of the 
initially inclined bar, cos(�(uB)) = (L - uB)/l1(uB) the projection 
of the same bar on the x axis, FA and FB the nodal forces in 
direction x and uA and uB the corresponding displacements. 

The cylindrical shell whose characteristics are shown in Fig. 
2, has been discretised by using quadratic shell elements available 
in the ANSYS library limiting, for simplicity sake, the analysis to 
a quarter of the structure. The straight sides have all the d.o.f. ’s 
constrained except the rotations around the direction parallel to 
the cylinder axis. This kind of behaviour of the examined 
structure has been numerically evaluated, for different values of 
the shell thickness, by Crisfield [36] and Surana [42]. 

Fig. 2. Cylindrical shell with unstable behaviour [36] 

Finally, the structure shown in Fig. 3, is made up of beam 
elements with square section and is constrained and loaded just 
like the previous one. 

Fig. 3. Beam-made shell with unstable behaviour [33] 

The equilibrium paths of the first analyzed structure (Figs. 4 
and 5) always show a snap-through, when the ratio Km/K
between the rod stiffness changes, and a contemporary snap-back 
might be present. The latter possibility occurs when Km/K
becomes lower than �2-1, as the analytical expression (11) of the 
same path shows. 

The analysis by finite elements with the Arc-Length technique 
implemented in the ANSYS code reveals more and more 
convergence difficulties when this ratio gets smaller. It has been 
found that, for the analyzed structure �max is a crucial parameter 
for the convergence. For Km/K = 1 (Fig. 4) the snap-back does 
not take place and the convergence is reached by assuming �max
less than the one corresponding to an initial increment of the load 
multiplier � equal to about 1/20; on the contrary if the ratio Km/K
= 0.28 (Fig. 5) it is necessary, in order to recover the whole 
equilibrium path without inversion of direction, to set up the 
initial increment of ��equal at most to 1/2000, because the 
algorithm becomes unstable for bigger load steps. 

Fig. 4. Equilibrium path of the first schema without snap-back 

The cylindrical shell structure presents a behaviour strongly 
influenced by the thickness. When the thickness is t=12.7 mm 
(Fig. 6) the case may be solved by setting up the displacement 
increment of the central node A and then verifying the reaction; 
but if we want to impose directly the force, it is necessary to use 
the Arc Length method owing to the presence of snap-through. In 
this second case we can identify, without any relevant difficulty, 
the equilibrium path with a large possibility to choose the initial 
parameters. If the shell thickness is t=6.35 mm (Fig. 7) the use of 
Arc-length method is compulsory owing to the presence of the 
snap-back. In this case the choice of the calculation options, and 
in particular of the initial value of �, �0, and the maximum 
allowed value �max, greatly influences the convergence of the 
solution, even if it has been reached without too many difficulties. 
The results shown in the Figures are in good agreement with those 
presented in [36] and [39]. 

Fig. 5. Equilibrium path of the first schema with snap-back 

The equilibrium paths of the third kind of structure (Figs. 8 - 
11) show a qualitative behaviour very similar to that of the shell. 
Also in this case, when the geometrical parameter l diminishes, 
we proceed from easily identified paths with only snap through to 
paths with characteristics of more difficult numerical convergence 
which in addition present snap-back or quite “curling”. 

For l = 16 mm the analysis does not present any difficulty and 
the convergence may be reached by large field of initial 
parameters variation. If we put l = 9 mm we can point out the 
presence of a marked snap-back. In this case the difficulties of the 
analysis convergence are certainly higher by using the ANSYS 
code: only by setting up a load step number included between 90 
and 110 we can redraw the entire equilibrium curve. If the step 
number is higher than 110 the return to the already evaluated path 
occurs; but if the mentioned number is less than 90 the instability 
of the iterative procedure appears with an untimely jump on the 
second stable branch as soon as the trend towards the snap-back 
effect starts to be considerable. Besides, also in the case in which 
the critical zone is overcome, the equilibrium points are not 
evaluated in succession along the curve, but they are the results of 
numerous changes of direction which stop only after many load 
steps, allowing in this way to go on following the path. 

By reducing the value of l (Figs.10 and 11), in spite of 
numerous tests performed varying each initial parameter, the 
ANSYS solver has not been able to overcome the first snap-back. 
In some cases, by adequately increasing the number of load steps, 
we can anyway obtain the convergence; but as this problem 
involves a number of dof’s equal about to fifty and the number of 
necessary steps is estimated to be of magnitude order of hundreds 
of thousands it is difficult to get results in reasonable time. 

The plots related to this kind of structure also show 
equilibrium paths evaluated by the in-house solver. The 
elaborated solver, also endowed with the ability of the load step 
agreement to the curvature of the equilibrium path, presents the 
best stability qualities being able to point out, without any 
difficulty and with a reduced number of load steps complicated 
paths just like those shown in Figs. 10 and 11. 

Fig. 6. Equilibrium path of a thick cylindrical shell 

Fig. 7. Equilibrium path of a thin cylindrical shell 
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Fig. 8. Thick structure: only snap-through is present 

Fig. 9. Moderately thick structure: snap-back is present 

Fig. 10. Thin structure equilibrium path 

Fig. 11. Very thin structure equilibrium path 

5. Analysis of results 
The option of non-linear static evaluation of results by the Arc 

Length method, implemented in commercial FE codes, generally 
implies the possibility of using a certain number of parameters 
among those we discussed in the previous paragraphs. Four or 
five instructions are usually included which allow the definition 
of these parameters: three of them define the initial length �0, the 
maximum �max and the minimum �min of the parameter �, while 
the others are indirectly present through their influence on the 
automatic optimization procedure of this length. The careful 
choice of these parameters determines not only the number of 
equilibrium points which are evaluated and the computation 
times, but also the same length of the curve, in the domain (u; �)
revealed before convergence difficulties arise. 

For example, if the particular shape of the path needs, for the 
automatic adaptive procedure, smaller and smaller load steps, the 
analysis will be stopped when the lowest fixed length of the arc 
radius has been reached. In this case, if it is possible, we must 
restart the analysis starting from the latest found equilibrium 
point, after varying opportunely the initial parameters. 
On this subject, in order to utilize efficiently the restart option, it 
is suitable that the restart point of the new analysis lies on a stable 
zone of the equilibrium curve. On the contrary we introduce a 
strong instability reason in the iterative algorithm which cannot be 
always overcome. 

Moreover, convergence problems may arise which can be 
avoided with much more difficulties because of instability caused 
by the use of the relation (9) instead of (8) in evaluating the 
increment of the load parameter. In some cases this increment 
offers an uncontrolled increasing modulus while the iterations in 
the same load step proceed as far as to reach the maximum 
allowed values by the initial parameters. At this point the 
automatic bisection procedure of the radius � is carried out; but it 
is not able in every case to solve this instability condition and 
performs successive bisections as far as the value �min is reached 
and the analysis stops without reaching the convergence. 

We can attempt to solve the problem by varying the initial 
amplitude of the load step and/or � limits, which could turn out to 
be too large or too small. Anyway we must point out that the same 
instability may lead to the individuation of an equilibrium point 
also very far from the starting point in spite of the constraint 
imposed to the load and displacement increments, especially if an 
excessive value for the parameter �max is chosen. 

A typical erroneous trend of the method, present in nuce 
already in the quadratic formulation lying on the hypersurface 
(eq. 3b), consists in the tendency to evaluate equilibrium points 
belonging to the already evaluated path. Usually the commercial 
codes offer a check routine capable to point out in many cases this 
difficulty and to attempt a solution by dividing the currently 
imposed value of �.

But sometimes the mistake is not pointed out and the analysis 
proceeds without interruptions running over the already 
determined whole path. In these cases the analysis must be 
repeated from the starting point after varying the solution 
parameters or stopping the computation before the inversion in 
order to try, if it is possible, a further restart. 

6. Procedure parameters for dynamical 
transient analysis 

From the discussion presented in the previous sections, it is 
possible to infer that the convergence problems arising around the 
critical points durig the static analysis are caused essentially by 
ill-conditioning of the stiffness matrix K. If there is not the 
possibility to use an alternative solver, this situation can be 
avoided by using solution algorithms of dynamic transients in the 
way that we will expose in what follows. 

It is worth noting that the dynamical transient analysis implies 
the determination of the dynamical response of a structure to any 
time-dependent load for which any step by step configuration of 
the examined structure will be influenced not only by the same 
load but also by the mass and damping distribution. 
Referring to finite element formulation, the governing equation of 
dynamical equilibrium in matrix form is written as 

M ��u  + C �u  + ��u ) = F(t), (12) 

where

M is the mass matrix, 
C is the damping matrix, 
� is the nodal force vector, 
��u  is the nodal accelerations vector, 
�u  is the nodal velocities vector, 

u is the nodal displacements vector, 
F(t) is the nodal loads vector. 

In order to utilize the algorithms of dynamic transients to 
obtain static equilibrium points which contain unstable zones, it is 
necessary that the forces deriving from the presence of masses 
and dissipations are reduced up to the quasi static equilibrium by 
searching, at the same time, the maximum efficiency in the 
computational effort in terms of times and then in terms of total 
number of iterations. 

Quantities parameters for solving algorithm on which we can 
operate to achieve the above mentioned results are: 

a) the damping matrix C, depending on the damping value 
imposed to the system as internal damping of the material or, 
similarly to the examined case, as � and ��defined in what 
follows;

b) the mass matrix M, easily to control by means of value of 
material density, or eventually, of lumped masses; 

c) the time interval of the load application and the imposed 
integration step �t.

7. Determination of procedure 
parameters

In order to develop the dynamical analysis whose aims are 
discussed in the previous paragraphs, the parameters in the 
procedure listed above must be opportunely determined taking in 
account some considerations. 
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Fig. 8. Thick structure: only snap-through is present 

Fig. 9. Moderately thick structure: snap-back is present 

Fig. 10. Thin structure equilibrium path 

Fig. 11. Very thin structure equilibrium path 

5. Analysis of results 
The option of non-linear static evaluation of results by the Arc 

Length method, implemented in commercial FE codes, generally 
implies the possibility of using a certain number of parameters 
among those we discussed in the previous paragraphs. Four or 
five instructions are usually included which allow the definition 
of these parameters: three of them define the initial length �0, the 
maximum �max and the minimum �min of the parameter �, while 
the others are indirectly present through their influence on the 
automatic optimization procedure of this length. The careful 
choice of these parameters determines not only the number of 
equilibrium points which are evaluated and the computation 
times, but also the same length of the curve, in the domain (u; �)
revealed before convergence difficulties arise. 

For example, if the particular shape of the path needs, for the 
automatic adaptive procedure, smaller and smaller load steps, the 
analysis will be stopped when the lowest fixed length of the arc 
radius has been reached. In this case, if it is possible, we must 
restart the analysis starting from the latest found equilibrium 
point, after varying opportunely the initial parameters. 
On this subject, in order to utilize efficiently the restart option, it 
is suitable that the restart point of the new analysis lies on a stable 
zone of the equilibrium curve. On the contrary we introduce a 
strong instability reason in the iterative algorithm which cannot be 
always overcome. 

Moreover, convergence problems may arise which can be 
avoided with much more difficulties because of instability caused 
by the use of the relation (9) instead of (8) in evaluating the 
increment of the load parameter. In some cases this increment 
offers an uncontrolled increasing modulus while the iterations in 
the same load step proceed as far as to reach the maximum 
allowed values by the initial parameters. At this point the 
automatic bisection procedure of the radius � is carried out; but it 
is not able in every case to solve this instability condition and 
performs successive bisections as far as the value �min is reached 
and the analysis stops without reaching the convergence. 

We can attempt to solve the problem by varying the initial 
amplitude of the load step and/or � limits, which could turn out to 
be too large or too small. Anyway we must point out that the same 
instability may lead to the individuation of an equilibrium point 
also very far from the starting point in spite of the constraint 
imposed to the load and displacement increments, especially if an 
excessive value for the parameter �max is chosen. 

A typical erroneous trend of the method, present in nuce 
already in the quadratic formulation lying on the hypersurface 
(eq. 3b), consists in the tendency to evaluate equilibrium points 
belonging to the already evaluated path. Usually the commercial 
codes offer a check routine capable to point out in many cases this 
difficulty and to attempt a solution by dividing the currently 
imposed value of �.

But sometimes the mistake is not pointed out and the analysis 
proceeds without interruptions running over the already 
determined whole path. In these cases the analysis must be 
repeated from the starting point after varying the solution 
parameters or stopping the computation before the inversion in 
order to try, if it is possible, a further restart. 

6. Procedure parameters for dynamical 
transient analysis 

From the discussion presented in the previous sections, it is 
possible to infer that the convergence problems arising around the 
critical points durig the static analysis are caused essentially by 
ill-conditioning of the stiffness matrix K. If there is not the 
possibility to use an alternative solver, this situation can be 
avoided by using solution algorithms of dynamic transients in the 
way that we will expose in what follows. 

It is worth noting that the dynamical transient analysis implies 
the determination of the dynamical response of a structure to any 
time-dependent load for which any step by step configuration of 
the examined structure will be influenced not only by the same 
load but also by the mass and damping distribution. 
Referring to finite element formulation, the governing equation of 
dynamical equilibrium in matrix form is written as 

M ��u  + C �u  + ��u ) = F(t), (12) 

where

M is the mass matrix, 
C is the damping matrix, 
� is the nodal force vector, 
��u  is the nodal accelerations vector, 
�u  is the nodal velocities vector, 

u is the nodal displacements vector, 
F(t) is the nodal loads vector. 

In order to utilize the algorithms of dynamic transients to 
obtain static equilibrium points which contain unstable zones, it is 
necessary that the forces deriving from the presence of masses 
and dissipations are reduced up to the quasi static equilibrium by 
searching, at the same time, the maximum efficiency in the 
computational effort in terms of times and then in terms of total 
number of iterations. 

Quantities parameters for solving algorithm on which we can 
operate to achieve the above mentioned results are: 

a) the damping matrix C, depending on the damping value 
imposed to the system as internal damping of the material or, 
similarly to the examined case, as � and ��defined in what 
follows;

b) the mass matrix M, easily to control by means of value of 
material density, or eventually, of lumped masses; 

c) the time interval of the load application and the imposed 
integration step �t.

7. Determination of procedure 
parameters

In order to develop the dynamical analysis whose aims are 
discussed in the previous paragraphs, the parameters in the 
procedure listed above must be opportunely determined taking in 
account some considerations. 

5.  Analysis of results 6.  Procedure parameters for 
dynamical transient analysis

7.  Determination of procedure 
parameters
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First, in order to obtain a good approximation to static solution it 
is necessary to introduce some damping to contrast the effect of 
inertial forces. But relatively high damping could cause the increasing 
of computational times because it would take a longer time to reduce 
the effect of velocity dependent forces. The ideal goal would be to 
introduce a damping which is a little higher than the critical damping 
of the system in the frequency band mostly excited during the loading 
process. 
The damping matrix, as it is well known, usually may be defined as 

C = ��M + �K

where the values of � and ��must be externally imposed and 
influence each vibration mode by determining the relative 
damping coefficient �i, equal to ratio between the effective and the 
critical damping. 

If �i is the natural angular frequency of the i-th mode, � and �
satisfy the relation 

�i = ����i + ���i ��� (13) 

To the aim of the developed investigation, we assume, as 
usual, that the damping factor ��is approximately constant and 
slightly higher than the unity (e.g. 1.01) in a defined frequency 
band; so, given ��and an interval of frequencies �i � �j , we obtain 
a system of two equations with two unknowns � e � which are 

���������i �j ����i +�j)

������������i +�j). (14) 

With regard to the forces depending on mass distribution, by 
changing the matrix [M] operating on the material density or 
multiplying by a constant term the value of lumped masses, we 
only modify the time scale without influencing the final result. 

Finally, some considerations must be pointed out concerning the 
algorithm of Newmark [43] utilized in the dynamical calculations; the 
procedure is based on the well known recursive relation 
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where

������are the Newmark integration parameters, 
�t = tn+1 - tn,
� �nu  is the nodal displacement vector at time tn,
� �nu�  is the nodal velocity vector at time tn,
� �nu��  is the nodal acceleration vector at time tn,
� �1�nu  is the nodal displacement vector at time tn+1,
� �1�nu�  is the nodal velocity vector at time tn+1,
� �1�nu��  is the nodal acceleration vector at time tn+1.

From these relations we obtain the governing equation in the 
unknown � �1�nu
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The overcoming convergence problems, as already 
emphasized, around the critical points during the static analysis 
are caused by the ill-conditioning of the stiffness matrix K. We 
can avoid this difficulty during the dynamical transient analysis 
by choosing an opportunely small time integration step �t. In fact, 
by replacing the mentioned constant values in the multiplying 
matrix of the displacement vector, in which we assumed � = 1/4 
and � = 1/2 [44], we obtain the matrix 
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whose first term, with positive determinant, increases when �t
diminishes and/or when ��also increases. 

The influence of Newmark parameters on good conditioning 
of stiffness matrix K* is inferred from the same eq. (15); this 
conditioning is improved when ��decreases and when � increases. 
It is worth noting that the algorithm is unconditionally stable if 
the limitations described in [44] are satisfied. 

If we want to obtain a quasi-static solution by means of the 
eq. (12), the dynamic terms, dependent on velocity and 
acceleration, must be negligible with regard to the static term 
��u�. This condition should be formulated, by introducing a norm 
rate, as follows 

� = || M ��u  + C �u  || / ||���u��|| <  �. (16) 

The calculation of the check parameter �, by which it is 
possible to establish the accuracy of the quasi-static solution, is 
performed, within this work, by using an opportunely developed 
Fortran routine. 

8. Numerical investigations on quasi-
static analysis 

By describing the following applications we can define the 
different steps necessary for the development of the investigation 
by pointing out every time the influence and the causes of the 
choice of different parameters examined in the previous section 
and comparing the results with known numerical solutions. The 
first case we examined is the thin shell already shown in Fig. 2. 

Some considerations concerning a right setting of different 
parameters which influence the dynamical transient analysis we 
discussed about in the previous sections must be added. 

In order to determine � and � parameters, it is convenient to 
develop first of all a preliminary harmonic analysis from which 
derive the frequency response of amplitudes of different 
displacements of the structure under sinusoidal load of amplitude 
equal to the maximum value of the applied load with an 
opportunely small damping (Fig. 12). By this analysis it will be 
possible to determine what are the natural frequencies of the system 
mainly excited by the application of the imposed type of load. 

Thus it will be possible to identify the frequency band in 
which we can assume a constant value of the damping factor ���in
such a way as to damp all the unwanted structural vibrations. 

In problems in which the non-linearity highly affects the natural 
frequency value and in particular in cases which involve static 
instability of the structure, as in the treated case, it has to be remarked 
that sometimes natural frequencies of the system, different from the 
ones evaluated by harmonic analysis, will be detected. 

If we choose a frequency band ranging between the first and 
the n-th significant natural frequencies, those less than the first 
one which have effect around the critical point will be strongly 
damped. In these cases, also considering the arbitrariness in 
assuming the maximum significant frequency, we refer only to the 
first resonance frequency, by posing in (14) �i = �j= �1.

The value of the first natural frequency of the system gives, 
for the examined case, the damping coefficients � = 12.2 sec-1 e �
= 0.084 sec. 

Fig. 12. Frequency response of the cylindrical shell 

By using these damping coefficients and assuming a time interval 
for the application of the load equal to about 40 times the period of 
the first vibration mode of the structure (T1 � 0.5sec), by dynamic 
analysis equilibrium points are obtained and shown in Fig. 13. 

In the same Figure it is possible to compare these points with 
the static equilibrium curve, previously obtained by using the Arc 
Length method. 

The second analysed case is a typical stiffened thin panel, 
whose geometrical and structural characteristics have been 

reported in Fig. 14. The static solutions shown, among the 
dynamic ones, in Fig. 15, have been obtained by using the Arc 
Length method, by means of the MSC NASTRAN code. It 
presents a principal equilibrium path and two secondary ones 
determined by using different initial parameters set-up. 

While analysing the results obtained by the developed 
investigation, shown in Figs. 13 and 15 it is necessary above all to 
point out that, by considering the dynamical approach of the 
problem, it is not possible to determine the unstable equilibrium 
points related to the snap-back part of the curve; on the other hand 
these points may not have any particular significant engineering 
meaning. So by drawing the equilibrium curve obtained by the 
dynamical approach we observe that the snap-back phase of the 
structure is completely overcome, directly jumping from the pre-
buckling to the post-buckling phase. 

In the first examined case, in which there is the possibility to 
make comparisons with the static equilibrium path a very good 
agreement between the two solutions, static and dynamic, is shown. 
In the second case the static analysis has revealed three different 
equilibrium paths, and there is no guarantee that others are not 
present. Two dynamic analyses were performed, the first one with 
high damping coefficients in order to get a quasi-static solution, the 
other one with a small damping that returns a full dynamic solution. 
The quasi - static solution is close to a part of the three branches 
of the revealed static path, jumping without loss of continuity 
from a static path to the following one. The full dynamic solution 
presents a quite similar path, quantitatively, to the quasi-static and 
the changes of configuration corresponding to the different static 
branches occur at about the same values of the external force. 

In order to ensure the accuracy of the solution, as above 
mentioned, we must perform the analysis of the components of 
nodal forces due to mass and damping contributes by verifying 
that they are relatively small compared with the total value of the 
correspondent nodal force. 

By evaluating the check parameter �� the norm of non-static 
components of the nodal force is shown in graphical form versus 
the load application time in Fig. 16. 

It is possible to infer that it is less than 1% of the applied load 
value during a large part of the loading process; it is of about the 
same value in the initial part of the curve, where remarkable non-
linearity phenomena do not take place and so it would be easily 
valuable by static approach by simply eliminating the dynamical 
effects of the transient resolutive algorithm. In the part 
corresponding to the snap-back, where, as above said, it is not 
possible to obtain significant equilibrium points, the defined norm 
offers relatively high values. 

Obviously the greater is the loading time interval, the less are 
the damping effects and the greater the computing times; for this 
reason the choice of the time parameter must be made by 
averaging between the accuracy and the corresponding computing 
time. Proceeding in this way offers the considerable advantage 
that each convergence point represents an equilibrium point near to 
the static one with an approximation valuable in the discussed way.  

With reference to the second case, the quasi-static solution 
(obtained by means of the ANSYS code) is in good agreement 
with the static solution too, and the transition from an equilibrium 
path to another appears to be continuous. The dynamic solutions, 
developed with a very small damping factor, seem to verify the 
fact that the transition between the different equilibrium paths is 
well suited.  

8.  Numerical investigations on 
quasi-static analysis
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First, in order to obtain a good approximation to static solution it 
is necessary to introduce some damping to contrast the effect of 
inertial forces. But relatively high damping could cause the increasing 
of computational times because it would take a longer time to reduce 
the effect of velocity dependent forces. The ideal goal would be to 
introduce a damping which is a little higher than the critical damping 
of the system in the frequency band mostly excited during the loading 
process. 
The damping matrix, as it is well known, usually may be defined as 

C = ��M + �K

where the values of � and ��must be externally imposed and 
influence each vibration mode by determining the relative 
damping coefficient �i, equal to ratio between the effective and the 
critical damping. 

If �i is the natural angular frequency of the i-th mode, � and �
satisfy the relation 

�i = ����i + ���i ��� (13) 

To the aim of the developed investigation, we assume, as 
usual, that the damping factor ��is approximately constant and 
slightly higher than the unity (e.g. 1.01) in a defined frequency 
band; so, given ��and an interval of frequencies �i � �j , we obtain 
a system of two equations with two unknowns � e � which are 
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With regard to the forces depending on mass distribution, by 
changing the matrix [M] operating on the material density or 
multiplying by a constant term the value of lumped masses, we 
only modify the time scale without influencing the final result. 

Finally, some considerations must be pointed out concerning the 
algorithm of Newmark [43] utilized in the dynamical calculations; the 
procedure is based on the well known recursive relation 
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where

������are the Newmark integration parameters, 
�t = tn+1 - tn,
� �nu  is the nodal displacement vector at time tn,
� �nu�  is the nodal velocity vector at time tn,
� �nu��  is the nodal acceleration vector at time tn,
� �1�nu  is the nodal displacement vector at time tn+1,
� �1�nu�  is the nodal velocity vector at time tn+1,
� �1�nu��  is the nodal acceleration vector at time tn+1.

From these relations we obtain the governing equation in the 
unknown � �1�nu

� � � � � �� �� ���� �110 nuKCaMa  (15) 
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The overcoming convergence problems, as already 
emphasized, around the critical points during the static analysis 
are caused by the ill-conditioning of the stiffness matrix K. We 
can avoid this difficulty during the dynamical transient analysis 
by choosing an opportunely small time integration step �t. In fact, 
by replacing the mentioned constant values in the multiplying 
matrix of the displacement vector, in which we assumed � = 1/4 
and � = 1/2 [44], we obtain the matrix 
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whose first term, with positive determinant, increases when �t
diminishes and/or when ��also increases. 

The influence of Newmark parameters on good conditioning 
of stiffness matrix K* is inferred from the same eq. (15); this 
conditioning is improved when ��decreases and when � increases. 
It is worth noting that the algorithm is unconditionally stable if 
the limitations described in [44] are satisfied. 

If we want to obtain a quasi-static solution by means of the 
eq. (12), the dynamic terms, dependent on velocity and 
acceleration, must be negligible with regard to the static term 
��u�. This condition should be formulated, by introducing a norm 
rate, as follows 

� = || M ��u  + C �u  || / ||���u��|| <  �. (16) 

The calculation of the check parameter �, by which it is 
possible to establish the accuracy of the quasi-static solution, is 
performed, within this work, by using an opportunely developed 
Fortran routine. 

8. Numerical investigations on quasi-
static analysis 

By describing the following applications we can define the 
different steps necessary for the development of the investigation 
by pointing out every time the influence and the causes of the 
choice of different parameters examined in the previous section 
and comparing the results with known numerical solutions. The 
first case we examined is the thin shell already shown in Fig. 2. 

Some considerations concerning a right setting of different 
parameters which influence the dynamical transient analysis we 
discussed about in the previous sections must be added. 

In order to determine � and � parameters, it is convenient to 
develop first of all a preliminary harmonic analysis from which 
derive the frequency response of amplitudes of different 
displacements of the structure under sinusoidal load of amplitude 
equal to the maximum value of the applied load with an 
opportunely small damping (Fig. 12). By this analysis it will be 
possible to determine what are the natural frequencies of the system 
mainly excited by the application of the imposed type of load. 

Thus it will be possible to identify the frequency band in 
which we can assume a constant value of the damping factor ���in
such a way as to damp all the unwanted structural vibrations. 

In problems in which the non-linearity highly affects the natural 
frequency value and in particular in cases which involve static 
instability of the structure, as in the treated case, it has to be remarked 
that sometimes natural frequencies of the system, different from the 
ones evaluated by harmonic analysis, will be detected. 

If we choose a frequency band ranging between the first and 
the n-th significant natural frequencies, those less than the first 
one which have effect around the critical point will be strongly 
damped. In these cases, also considering the arbitrariness in 
assuming the maximum significant frequency, we refer only to the 
first resonance frequency, by posing in (14) �i = �j= �1.

The value of the first natural frequency of the system gives, 
for the examined case, the damping coefficients � = 12.2 sec-1 e �
= 0.084 sec. 

Fig. 12. Frequency response of the cylindrical shell 

By using these damping coefficients and assuming a time interval 
for the application of the load equal to about 40 times the period of 
the first vibration mode of the structure (T1 � 0.5sec), by dynamic 
analysis equilibrium points are obtained and shown in Fig. 13. 

In the same Figure it is possible to compare these points with 
the static equilibrium curve, previously obtained by using the Arc 
Length method. 

The second analysed case is a typical stiffened thin panel, 
whose geometrical and structural characteristics have been 

reported in Fig. 14. The static solutions shown, among the 
dynamic ones, in Fig. 15, have been obtained by using the Arc 
Length method, by means of the MSC NASTRAN code. It 
presents a principal equilibrium path and two secondary ones 
determined by using different initial parameters set-up. 

While analysing the results obtained by the developed 
investigation, shown in Figs. 13 and 15 it is necessary above all to 
point out that, by considering the dynamical approach of the 
problem, it is not possible to determine the unstable equilibrium 
points related to the snap-back part of the curve; on the other hand 
these points may not have any particular significant engineering 
meaning. So by drawing the equilibrium curve obtained by the 
dynamical approach we observe that the snap-back phase of the 
structure is completely overcome, directly jumping from the pre-
buckling to the post-buckling phase. 

In the first examined case, in which there is the possibility to 
make comparisons with the static equilibrium path a very good 
agreement between the two solutions, static and dynamic, is shown. 
In the second case the static analysis has revealed three different 
equilibrium paths, and there is no guarantee that others are not 
present. Two dynamic analyses were performed, the first one with 
high damping coefficients in order to get a quasi-static solution, the 
other one with a small damping that returns a full dynamic solution. 
The quasi - static solution is close to a part of the three branches 
of the revealed static path, jumping without loss of continuity 
from a static path to the following one. The full dynamic solution 
presents a quite similar path, quantitatively, to the quasi-static and 
the changes of configuration corresponding to the different static 
branches occur at about the same values of the external force. 

In order to ensure the accuracy of the solution, as above 
mentioned, we must perform the analysis of the components of 
nodal forces due to mass and damping contributes by verifying 
that they are relatively small compared with the total value of the 
correspondent nodal force. 

By evaluating the check parameter �� the norm of non-static 
components of the nodal force is shown in graphical form versus 
the load application time in Fig. 16. 

It is possible to infer that it is less than 1% of the applied load 
value during a large part of the loading process; it is of about the 
same value in the initial part of the curve, where remarkable non-
linearity phenomena do not take place and so it would be easily 
valuable by static approach by simply eliminating the dynamical 
effects of the transient resolutive algorithm. In the part 
corresponding to the snap-back, where, as above said, it is not 
possible to obtain significant equilibrium points, the defined norm 
offers relatively high values. 

Obviously the greater is the loading time interval, the less are 
the damping effects and the greater the computing times; for this 
reason the choice of the time parameter must be made by 
averaging between the accuracy and the corresponding computing 
time. Proceeding in this way offers the considerable advantage 
that each convergence point represents an equilibrium point near to 
the static one with an approximation valuable in the discussed way.  

With reference to the second case, the quasi-static solution 
(obtained by means of the ANSYS code) is in good agreement 
with the static solution too, and the transition from an equilibrium 
path to another appears to be continuous. The dynamic solutions, 
developed with a very small damping factor, seem to verify the 
fact that the transition between the different equilibrium paths is 
well suited.  
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The use of this technique can be necessary in order to 
overcome unrecoverable convergence problems of the static 
analysis. Moreover when more equilibrium paths are obtainable, it 
permits the continuous transition among them; this seems to 
develop similarly to the real phenomena.  

Fig. 13. Static vs quasi static equilibrium path (cyl. shell) 

Fig. 14. FE model of a stiffened panel 

Out of plane displacement of central node [mm] 

Fig. 15. Comparisons of stiffened panel equilibrium paths 

Fig. 16. Plot of the � norm (16) 

References 
[1] C. Calì, R. Esposito, M. Graziano, G. Russo, Numerical 

responses with finite displacements of axially compressed 
laminated panels, Italian-Polish Meeting on Analysis and 
Control of Complex Systems, Naples, November 1993. 

[2] C. Calì, R. Esposito, M. Graziano, G. Russo, Geometrically 
non-linear analysis for some axially compressed laminated 
cylindrical panels, Applied Composite Materials, 1, 1994. 

[3] C. Calì, F. Caputo Jr., G. Cricrì, R. Esposito, Analisi del 
comportamento in post-buckling di pannelli cilindrici 
laminati compressi assialmente, XXVI AIAS National 
Conference, 1997. 

[4] C. Calì, R. Esposito, Some design problems and correlated 
numerical techniques, International Seminar on Principles 
and Methods of Engineering Design, Naples, October 1997. 

[5] C. Calì, R. Esposito, Numerical Investigation on the Shear 
Buckling of Laminated Cylindrical Shells, 2nd AMME 
Conference, Gliwice, 1993. 

[6] C. Calì, R. Esposito, Investigation on Buckling of Multi-
layered Cylinders under Torsion, 14th AMME Conference, 
Zakopane, May 1995. 

[7] C. Calì, R. Esposito, G. Godono, Improvement of 
Optimizing Procedures in Design of Multilayered 
Cylindrical Orthotropic Panels, 5th AMME Conference, 
Gliwice-Wisla, December 1996. 

[8] C. Calì, F. Caputo jr, G. Cricrì, R. Esposito, Dynamic 
Analyses for Post-Buckling Behaviour, 7th AMME 
Conference, Gliwice-Zakopane, November 1998. 

[9]  E. Armentani, C. Calì, F. Caputo jr., R. Esposito, Influence 
of Curvature on Buckling Behaviuor of Aircraft Composite 
Panels, 8th AMME Conference, Gliwice-Rydzyna-
Pawlowice-Rokosowo, October 1999. 

[10] E. Armentani, F. Caputo jr., R. Esposito, Numerical 
simulation of a rolling process, 10th AMME Conference, 
Gliwice, December 2001. 

[11] E. Armentani, A. De Martino, M. Pirozzi, A complete FE 
model for vehicle crashworthiness, 11th AMME 
Conference, Gliwice-Zakopane, December 2005. 

[12] G. Forasassi, R. Lo Frano, Buckling of imperfect thin 
cylindrical shell under lateral pressure, Journal of 
Achivements in Materials and Manufacturing Engineering 
18 (2006), 287-290. 

[13] U. Lee, J. Cho, Dynamic response with arbitrary initial 
conditions using the FFT, Journal of Achivements in Materials 
and Manufacturing Engineering 18 (2006), 299-302. 

[14] V. Mandic, M. Stefanovic, M. Zivkovic, N. Grujovic, B. 
Misic, FE analysis of tube forming process with 
experimental verification, Journal of Achivements in Materials 
and Manufacturing Engineering, 18 (2006), 303-306. 

[15] J. B. Abrantes, A. Szabo-Ponce, G. F. Batalha , 
Experimental and numerical simulation of  tube 
hydroforming (THF), Journal of Materials Processing 
Techonology 164-165 (2005) 1140-1147. 

[16] M. Tahani, M.A. Torabizadeh, A. Fereidoon, Nonlinear 
analysis of functionally graded beams, Journal of 
Achivements in Materials and Manufacturing Engineering, 
18 (2006), 315-318. 

[17] Fuh-Kuo Chen, Shen-Fu Ko, Deformation analysis of 
springback in L-bending of sheet metal, Journal of 
Achivements in Materials and Manufacturing Engineering 
18 (2006) 339-342. 

[18] A. Gontarz, The new forging process of a wheel hub drop 
forging, Journal of Achivements in Materials and 
Manufacturing Engineering 18 (2006) 363-366. 

[19] Z. Pater, Finite element analysis of cross wedge rolling, 
Journal of Materials Processing Technology 173 (2006), 
201-208.

[20] T. Ohashi, H. Ito, K. Shinozaki, S.Ito, H. Watari, Analytical 
and experimental study on lateral extrusion of cross fitting 
with a lost core, Journal of Achivements in Materials and 
Manufacturing Engineering 18 (2006) 399-402. 

[21] I. Pahole, M. Puc, B. Vaupoti�, J. Bali�, Comparison of 
technology of forming the sheet metal by numerical 
simulations, Journal of Achivements in Materials and 
Manufacturing Engineering 18 (2006) 403-406. 

[22] E. Bayraktar, N. Isac, G. Arnold, Buckling limit diagrams 
(BLDs) of interstitial free steels (IFS): Comparison of 
experimental and finite element analysis, Journal of Materials 
Processing Technology 164–165 (2005) 1487–1494. 

[23] M. S. Tehrani, H. M. Naeini, P. Hartley, H. Khademizadeh, 
Localized edge buckling in cold roll-forming of circular tube 
section, Journal of Materials Processing Technology 177 
(2006) 617–620. 

[24] F. Mao, J.H. Mo, S.H. Huang, Study on instability of the 
point bolster sheet metal dieless forming, Journal of 
Materials Processing Technology 176 (2006) 13–18. 

[25] C.S. Namoco Jr., T. Iizuka, R.C. Sagrado, N. Takakura, K. 
Yamaguchi, Experimental and numerical investigation of 
restoration behavior of sheet metals subjected to bulging 
deformation, Journal of Materials Processing Technology 
177 (2006) 368–372. 

[26] Yuung-Ming Huang, Finite element analysis of tube inward 
curling process by conical dies, Journal of Materials 
Processing Technology 170 (2005) 616–623. 

[27] M.L. Alves, B.P.P. Almeida, P.A.R. Rosa, P.A.F. Martins, 
End forming of thin-walled tubes, Journal of Materials 
Processing Technology 177 (2006) 183–187. 

[28] S.C. Heo, J. Kim, B.S. Kang, Investigation on determination 
of loading path to enhance formability in tube hydroforming 
process using APDL, Journal of Materials Processing 
Technology 177 (2006) 653–657. 

[29] M.P. Lightfoot, N.A. McPherson, K. Woods, G.J. Bruce, 
Artificial neural networks as an aid to steel plate distortion 
reduction, Journal of Materials Processing Technology 172 
(2006) 238–242. 

[30] G.A. Wempner, Discrete approximation related to non-linear 
theories of solids, International Journal of Solids & 
Structures 7 (1971) 1581-1599. 

[31] E. Riks, The application of Newton’s method to the 
problems of elastic stability, Journal of Applied Mechanics  
39 (1972) 1060-1066. 

[32] E. Riks, An incremental approach to the solution of 
snapping and buckling programs, International Journal of 
Solids & Structures 15 (1979) 529-551. 

[33] G. Cricrì, Metodi di analisi via FEM del comportamento critico 
e post – critico di strutture elastiche – PhD thesis, march 1998. 

[34] C. Calì, F. Caputo Jr., G. Cricrì, R. Esposito. Dynamic 
analyses for post buckling behaviour, 7th AMME 
Conference, Zakopane, 1998. 

[35] A. Apicella, E. Armentani, C. Calì, F. Caputo, R. Esposito, 
Buckling and Post- Buckling Analyses of a GLARE Thick 
Flat Side Panel, ETC/OMAE 2000 Joint Conference, New 
Orleans, LA, February 2000. 

[36] M.A. Crisfield, A fast Incremental iterative Solution 
Procedure that handles “Snap-Through” - Computer & 
Structures 13 (1981) 55-62. 

References



63

Analysis and modelling

Numerical solution techniques for structural instability problems

The use of this technique can be necessary in order to 
overcome unrecoverable convergence problems of the static 
analysis. Moreover when more equilibrium paths are obtainable, it 
permits the continuous transition among them; this seems to 
develop similarly to the real phenomena.  

Fig. 13. Static vs quasi static equilibrium path (cyl. shell) 

Fig. 14. FE model of a stiffened panel 
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Fig. 15. Comparisons of stiffened panel equilibrium paths 
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