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Analysis and modelling

ABSTRACT
Purpose: of this work is to provide a numerical assessment of 3D crack problems with linear and non-linear 
loading conditions.
Design/methodology/approach: Single-Domain Boundary Element Method and in particular Dual Boundary 
Element Method (DBEM) is adopted. The method, implemented in a commercial code, uses both the 
conventional Displacement Integral Equation and the less commonly used Traction Integral Equation. It relies 
on the use of discontinuous elements to model the cracks, whose Stress Intensity Factors (SIF’s) are calculated 
by means of the Crack Opening Displacement method (COD).
Findings: SIF’s on a circular quadrant crack and a rectangular through crack, initiated from a hole, have 
been evaluated with reference to single and two hole plates undergoing different linear and non-linear loading 
conditions. Such complex geometric and loading condition is worked out very efficiently and accurately by 
DBEM that is strongly recommended for this kind of application in alternative to FEM.
Research limitations/implications: Further improvement in the BEASY code will be necessary in order to 
lighten computational times. The presented analysis provide the basis for further development related to crack 
propagation analysis and residual strength assessment.
Practical implications: The methodology proposed will enable a significant reduction of the experimental effort.
Originality/value: The solution of a 3d crack assessment under non linear loading conditions with the 
possibility of checking the accuracy of the DBEM results against FEM calculus and other approaches 
(recalled in literature) in order to have a clear assessment of the possible industrial applications with related 
approximations involved.
Keywords: Numerical techniques; DBEM; Contact analysis; 3D crack corner crack; Through crack

1. Introduction 

Damage Tolerance is used in the design of many types of 
structures, such as bridges, military ships, commercial aircraft, 
space vehicle and merchant ships. It requires accurate prediction 
of fatigue crack growth under service conditions and typically this 
is accomplished with the aid of a numerical code. Many aspects of 
fracture mechanics are more complicated in practice than in two-
dimensional laboratory tests, textbook examples, or overly 

simplified computer programs. Load spectrum, threshold effects, 
environmental conditions, microstructural effects, small crack 
effects, Multiple Site Damage (MSD) conditions, material 
parameters scatter, mixed loading conditions and complex three 
dimensional geometry, all complicate the process of predicting 
fatigue crack growth in real word applications.  

This paper focuses on some of these complications: three 
dimensional crack assessment under complex stress state. In 
particular, a series of test have been designed and implemented to 
evaluate the SIF’s prediction capabilities for the Dual Boundary 

1.  Introduction

Element Method (DBEM) [1-2], as implemented in the 
commercial code BEASY [3]. With such methodology, the 
geometry of the test specimen and the shapes of crack fronts are 
not restricted to the simplified configurations found in the 
libraries of many commercial codes. 

2. Dual Boundary Element method
There follows a summary of the Single-Domain Boundary 

Element Method and in particular the Dual Boundary Element 
Method, for the numerical evaluation of linear elastic crack 
problems using boundary integral equations with discontinuous 
elements. The method, very powerful in particular for crack 
propagation problems, uses both the conventional Displacement 
Integral Equation (the free term of which involves displacements 
at the source point) and the less commonly used Traction Integral 
Equation (the free term of which involves tractions at the source 
point). Actually, the displacement equation alone does not provide 
a viable method for single domain analysis of general crack 
problems, because of the stiffness matrix ill-conditioning (there is 
not a sufficient number of  independent equations). This drawback 
can be circumvented adopting two independent equations on the 
two crack edges.  

2.1 Boundary Integral Equations (BIE) 

Define spatial coordinates xi  (subscript i=1,2,3), with source 
point  x*

i . Displacement ui(x) and traction ti(x) on the boundary S 
of a three-dimensional solid are related by the displacement BIE 
(1) and traction BIE (2) (three components j=1,2,3), for a source 
point on a smooth boundary S where the summation convention is 
assumed for repeated suffices: 
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This is a limiting form of the BIE characterised by a source 
point interior to the boundary S. The kernel functions Tij(x*,x) and 
Dkij(x*,x) are O(r-2) singular while Skij(x*,x) is O(r-3) singular. The 

two symbols 
S S

� �

� �, stand respectively for the Chauchy and 

Hadamard principal value integrals. 
In the displacement and traction equation, there arise 

apparently singular terms due to the presence of the source point 
on the boundary. Provided that certain continuity conditions hold 
for the surface variables (displacement and traction) at the source 
point, no singularities actually exist and the integral equations are 
well defined.  

2.2 Discontinuous elements

Application of conventional Boundary Element Method with 
continuous element to the hypersingular traction equation fails 
due to the unsuitable representation of the surface displacement 
and traction at the nodal source points. The numerical solutions 
will not converge unless the assumed form of displacement and 
traction on the boundary element adjoining the source point 
comply with the following conditions: displacement and traction 
assumed on the boundary elements must be respectively C1 and 
C0-continuous at the boundary source point. The necessary 
conditions for the existence of the principal value integrals 
obtained in the derivation of the dual boundary integral equations 
impose restrictions on the discretization. Actually, in the traction 
equation the continuity requirements of the Hadamard principal 
value integral are satisfied (in a simple way) only by 
discontinuous elements, since all the nodes are internal points of 
the element where a continuous differential approximation is 
defined. Moreover, using the traction equation, the geometry 
smoothness requirement at a collocation point is implicitly 
satisfied by the discontinuous element.  

2.3.  Crack modelling 

The general modelling strategy can be summarised as follows: 
� the traction equation (2) is applied for collocation on one of 

the crack boundaries; 
� the displacement equation (1) is applied for collocation on the 

opposite crack boundary and remaining boundaries; 
� the crack boundaries are discretized with discontinuous 

boundary elements; 
� continuous quadratic boundary element are used along the 

remaining boundaries of the problem domain, except at the 
intersection between a crack and an edge, where 
discontinuous or semi-discontinuous elements are required, in 
order to avoid nodes at the intersection. 

3. Stress Intensity Factors (SIF’s) 
Discontinuous quadratic boundary elements are used along 

the crack front, and values of stress intensity factors (SIF’s) are 
derived from the crack opening displacement method (COD) on 
such elements, by using the BEASY code, well suited for 3D 
SIF’s evaluation and automatic crack propagation. 

4. Example solutions
A large square plate contains one or two cracked holes; its 

overall sizes are: -B<x1<+B, -H<x2<+H, -h/2<x3<h/2, as shown in 
Figg. 1-2. Values of tensile modulus E=72000 N/mm2 and 
Poisson’s ratio � � .3  are assumed. The hole radius is R=2.0 mm 
and, in the two hole case, the hole pitch is P=20.0 mm. The plate 
dimensions 2B and 2H are chosen sufficiently large so as to 
simulate an infinite panel and the plate thickness is h=1.6mm. 

(1)

(2)
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overall sizes are: -B<x1<+B, -H<x2<+H, -h/2<x3<h/2, as shown in 
Figg. 1-2. Values of tensile modulus E=72000 N/mm2 and 
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dimensions 2B and 2H are chosen sufficiently large so as to 
simulate an infinite panel and the plate thickness is h=1.6mm. 

(1)

(2)
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3.  Stress Intensity Factors 
(SIF’s)

4.  Example solutions
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Two structural configurations are considered: 
A single hole plate, with a circular quadrant surface crack (Fig.1) 
of radius a1=1.2 mm or a1=0.8 mm and with a panel size of 
2B=2H=80mm (adequate in order to approximate as infinite the 
plate with less than 1.5% SIF’s variation); 

Fig. 1. One hole plate with circular crack at a hole 

2. A two hole plate with a quadrant crack of radius a1=0.8 mm 
and a nearby through-crack emanating from an adjacent hole 
(Fig.2) of length a2=8.0 mm, with a panel size of 
2B=2H=160mm (adequate in order to approximate as infinite 
the plate with less than 1.5% SIF’s variation).  

The loading cases considered for the one hole plate are (Fig.3): 
a) uniform remote tension S=100 N/mm2 applied as tractions on 

one end surface, whilst the other end surface is suitably 
constrained. SIF’s values for the quadrant crack (a1=1.2 mm) 
are normalised by K S a Q0 1� �� /  , where Q=2.464 [4].  

b) uniform remote bending �22 = S (2 x3 / h) each applied as 
tractions t2 acting on the end surface x2=+H whilst the other 
end surface is suitably constrained. SIF’s values for quadrant 
crack (a1=1.2 mm) are normalised as above;  

c) momentum of magnitude M=F*3.2=5120 N*mm (F=1600 
N), applied by means of a tilted pin, with the contact area 
modelled by gap elements. SIF’s values for the quadrant 
crack (a1=0.8 mm) are normalised by K S a Q0 1� �� / ,
where Q=2.464 [4]. In this load case the tension S is the hole 
bearing stress and is calculated as S=F/(2*R*h)=250N/mm2.

h

�

a1 a2

P

2H

2B

x1

x1

x3

x2

Fig. 2. Two hole plate with quadrant and through cracks

The loading case considered for the two hole plate is (Fig.4): 
pin load of magnitude F=1600 N, applied as body load in each pin 
(made of the same plate material) of the two-hole plate, with the 
contact area modelled by gap elements. SIF’s values for the 
quadrant crack are normalised by K S a Q0 1� �� /  , where 
Q=2.464 [4]. SIF’s values for the through crack are normalised by 
K S a0 2� �� . In this load case the tension S is the hole bearing 
stress and is calculated as S = F / (2*R*h) = 250N/mm2 (F=1600 N). 

4.1 One hole plate results 

For one-hole plate, in the case of uniform remote tension, 
tridimensional numerical solutions have been obtained using a 
total of about 990 linear elements, as in Fig.5, except on the 
cracks where “reduced” quadratic elements (8-noded elements) 
have been used in any case. 

This mesh corresponds to 6252 degrees of freedom (dof’s). 
Increasing the order of the elements to “reduced” quadratics 
(7533 dof) around the crack, produced a slight SIF’s variation 
(less than 2%) while run-times increased significantly. Negligible 
changes (less than 1%) in the solution were produced by setting 
up the element subdivision option, applied to the most refined 
mesh adopted, capable to augment the number of Gauss 
quadrature points in quasi-singular integrations. Using an 
increased number of subdivisions in the angular and radial 
direction had a negligible effect on the results (moreover it would 
be possible to reduce the number of crack elements without 
affecting significantly the results). Normalised SIF’s (KI/ K0,
K0=124 Nmm-3/2) for the quadrant crack, a1=1.2 mm, are given in 

4.1.  One hole plate results

Fig. 6. The mesh on the crack is based on 8 uniform divisions in 
the angular direction and 6 divisions in the radial direction as 
illustrated, together with Von Mises stresses for traction case, in 
Figg. 7a-b.  

The same remarks hold for the bending case where the same 
mesh as above has been adopted but now it is necessary a p-
convergence analysis up to quadratic elements (9-noded 
elements), in order to get good convergence results. Von Mises 
stress on the overall plate and in particular around the hole are 
illustrated in Figg. 8a-b. Normalized SIF’s  for the quadrant crack 
(KI/ K0, K0=124 Nmm-3/2) are presented in Fig. 9. Von Mises 
stress and crack mesh are depicted in Fig. 10. 

For tilted-pin case, the mesh adopted is based on 1190 
elements varying from linear to quadratic in a p-convergence 
study. Such mesh is well evident from Figg. 11a-d, where 
deformed plots, representative of the stress state, are magnified by 
a factor of 15. The analysis is non linear and an iterative-
incremental procedure is adopted. In Figg. 12-14 normalised 
SIF’s (KI/Ko, KII/Ko, KIII/Ko) are depicted. In this case there is 
a mixed load condition even if the mode I of load is prevailing. 

Fig. 3. Loading conditions for the one hole plate 
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For tilted-pin case, the mesh adopted is based on 1190 
elements varying from linear to quadratic in a p-convergence 
study. Such mesh is well evident from Figg. 11a-d, where 
deformed plots, representative of the stress state, are magnified by 
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incremental procedure is adopted. In Figg. 12-14 normalised 
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a mixed load condition even if the mode I of load is prevailing. 

4.2 Two hole plate results 

For two hole plate, the boundary element mesh used for the 
quadrant crack corresponds to 6 uniform divisions in the angular 
direction and 4 divisions in the radial direction, whilst for the 
through crack it corresponds to 6 uniform divisions in x3 direction
and 5 divisions in x1 direction. The plate boundary mesh is easily 
obtained. 

Fig. 4. Loading condition for the two hole plate 

For pin-loading case, linear elements have been used 
throughout the plate surface, except in the zone surrounding the 
two holes, including the two loaded pins, modelled with 
“reduced” quadratic elements. In this contact problem, modelled 
with gap elements on the interface area, the analysis is non-linear 
because of a changeable contact area with a gradually increasing 
load and it is worked out by an iterative-incremental procedure. In 
Figg. 15a-c are illustrated normal tractions on pin-hole contact 
area (it is evident they are zero in the disconnected part). 
Normalized SIF’s for the quadrant cracks are depicted in Fig. 16a, 
and those for the through cracks in Fig. 16b. In Fig. 17 Von Mises 
stress are well evident around the cracks whose opening in the 
deformed plate is showed too. 

The plate boundary mesh is illustrated in Fig. 18. 
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Fig. 2. Two hole plate with quadrant and through cracks

The loading case considered for the two hole plate is (Fig.4): 
pin load of magnitude F=1600 N, applied as body load in each pin 
(made of the same plate material) of the two-hole plate, with the 
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mesh adopted, capable to augment the number of Gauss 
quadrature points in quasi-singular integrations. Using an 
increased number of subdivisions in the angular and radial 
direction had a negligible effect on the results (moreover it would 
be possible to reduce the number of crack elements without 
affecting significantly the results). Normalised SIF’s (KI/ K0,
K0=124 Nmm-3/2) for the quadrant crack, a1=1.2 mm, are given in 

Fig. 6. The mesh on the crack is based on 8 uniform divisions in 
the angular direction and 6 divisions in the radial direction as 
illustrated, together with Von Mises stresses for traction case, in 
Figg. 7a-b.  

The same remarks hold for the bending case where the same 
mesh as above has been adopted but now it is necessary a p-
convergence analysis up to quadratic elements (9-noded 
elements), in order to get good convergence results. Von Mises 
stress on the overall plate and in particular around the hole are 
illustrated in Figg. 8a-b. Normalized SIF’s  for the quadrant crack 
(KI/ K0, K0=124 Nmm-3/2) are presented in Fig. 9. Von Mises 
stress and crack mesh are depicted in Fig. 10. 

For tilted-pin case, the mesh adopted is based on 1190 
elements varying from linear to quadratic in a p-convergence 
study. Such mesh is well evident from Figg. 11a-d, where 
deformed plots, representative of the stress state, are magnified by 
a factor of 15. The analysis is non linear and an iterative-
incremental procedure is adopted. In Figg. 12-14 normalised 
SIF’s (KI/Ko, KII/Ko, KIII/Ko) are depicted. In this case there is 
a mixed load condition even if the mode I of load is prevailing. 
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study. Such mesh is well evident from Figg. 11a-d, where 
deformed plots, representative of the stress state, are magnified by 
a factor of 15. The analysis is non linear and an iterative-
incremental procedure is adopted. In Figg. 12-14 normalised 
SIF’s (KI/Ko, KII/Ko, KIII/Ko) are depicted. In this case there is 
a mixed load condition even if the mode I of load is prevailing. 

4.2 Two hole plate results 

For two hole plate, the boundary element mesh used for the 
quadrant crack corresponds to 6 uniform divisions in the angular 
direction and 4 divisions in the radial direction, whilst for the 
through crack it corresponds to 6 uniform divisions in x3 direction
and 5 divisions in x1 direction. The plate boundary mesh is easily 
obtained. 

Fig. 4. Loading condition for the two hole plate 

For pin-loading case, linear elements have been used 
throughout the plate surface, except in the zone surrounding the 
two holes, including the two loaded pins, modelled with 
“reduced” quadratic elements. In this contact problem, modelled 
with gap elements on the interface area, the analysis is non-linear 
because of a changeable contact area with a gradually increasing 
load and it is worked out by an iterative-incremental procedure. In 
Figg. 15a-c are illustrated normal tractions on pin-hole contact 
area (it is evident they are zero in the disconnected part). 
Normalized SIF’s for the quadrant cracks are depicted in Fig. 16a, 
and those for the through cracks in Fig. 16b. In Fig. 17 Von Mises 
stress are well evident around the cracks whose opening in the 
deformed plate is showed too. 

The plate boundary mesh is illustrated in Fig. 18. 

4.2.  Two hole plate results
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Fig. 5. Overall boundary mesh for the one hole plate 
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Fig. 6. Normalized SIF’s for the one hole plate in traction case 

Fig. 7a. Close-up of the crack element mesh and stress state 

Fig. 7b. Close-up of the hole mesh and Von Mises stress state 

Fig. 8a. Overall stress state on the one hole plate deformed plot, in 
bending case 

Fig. 8b. Close-up of the stress state around the hole (R=2mm) 
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Fig. 9. Normalized SIF’s (KI / K0 with K0=124 Nmm-3/2) for the 
one hole plate in bending case 

Fig. 10. Stress state around the crack (a1=1.2), in bending case

Fig. 11a. Close up of the stress state for a tilted pin (M=5120 
Nmm, a1=0.8 mm) in the one hole plate 

Fig. 11b. Stress state on a deformed plot, for a clamped plate 
undergoing momentum 

Fig. 11c. Close-up of the hole contact pressure on one hole plate 
deformed plot 

Fig. 11d. Close-up of the hole surface contact stress on one hole 
plate deformed plot 
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Fig. 5. Overall boundary mesh for the one hole plate 
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Fig. 6. Normalized SIF’s for the one hole plate in traction case 

Fig. 7a. Close-up of the crack element mesh and stress state 

Fig. 7b. Close-up of the hole mesh and Von Mises stress state 

Fig. 8a. Overall stress state on the one hole plate deformed plot, in 
bending case 

Fig. 8b. Close-up of the stress state around the hole (R=2mm) 
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Fig. 9. Normalized SIF’s (KI / K0 with K0=124 Nmm-3/2) for the 
one hole plate in bending case 

Fig. 10. Stress state around the crack (a1=1.2), in bending case

Fig. 11a. Close up of the stress state for a tilted pin (M=5120 
Nmm, a1=0.8 mm) in the one hole plate 

Fig. 11b. Stress state on a deformed plot, for a clamped plate 
undergoing momentum 

Fig. 11c. Close-up of the hole contact pressure on one hole plate 
deformed plot 

Fig. 11d. Close-up of the hole surface contact stress on one hole 
plate deformed plot 
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Fig. 12. Normalized SIF’s (KI/Ko, Ko=252 Nmm-3/2, a1=0.8mm) 
in tilted pin case 
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Fig. 13. Normalized SIF’s (KII/Ko, Ko=252 Nmm-3/2, a1=0.8mm) 
in tilted pin case 
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Fig. 14. Normalized SIF’s (KI/Ko, Ko=252 Nmm-3/2, a1=0.8mm) 
in tilted pin case 

Fig. 15a. Hole bearing traction on the deformed contact area for 
the pin-loaded two hole plate 

Fig. 15b. Pin bearing traction on the deformed contact area for the 
pin-loaded two hole plate 

Fig. 15c. Pin bearing traction on the deformed contact area for the 
pin-loaded two hole plate 
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Fig. 16a. Normalized SIF’s (K0=252 Nmm-3/2) for quadrant crack 
of the pin-loaded plate 
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Fig. 16b. Normalized SIF’s (K0=1252 Nmm-3/2) for through crack 
of the pin-loaded plate 

Fig. 17. Stress state around the deformed holes of the pin-loaded 
plate (F=1600 N on each pin) 

4.3. Multi region formulation 

Since the procedures developed for FEM generally assume a 
particular type of matrix, i.e. symmetric, positive definite (SPD), 

sparse with small bandwidth, new solution strategies are required 
to solve the different types of matrix produced by BEM. 

In the construction of large, complex models it is often more 
economical to split the model into smaller simpler sub-models. 
These sub-models or regions, which may also have different 
material properties, are modelled independently and then joined 
together along an interface. This strategy leads to an overall 
system matrix which has a blocked, sparse and unsymmetric 
character. This characteristic of multi-region formulation 
significantly extends the range of problems that can be solved, 
due to the large savings in storage and CPU calculations, required 
to solve the matrix, compared with the case of a fully populated 
matrix. However, the sparsity of such matrices is of a different 
type than that of FEM matrices. This has lead to research being 
concentrated on the direct method for solving matrices, 
characterised by the factorisation of the system matrix by Gauss 
elimination or by Choleski’s method. As a matter of fact a direct 
method is implemented in BEASY code for system matrices 
resolution. 

Fig. 18. Overall boundary element mesh used for the two hole 
plate, in bending case 

5. Conclusions 
In conclusion some further remarks are due with regard to the 

opportunity, with a DBEM procedure, to model the zone 
surrounding the cracks with discontinuous elements, in such a 
way to simplify the meshing process and without loss of accuracy. 
Moreover it has been possible to reduce run times and storage 
required, by zoning the whole plate in an adequate number of 
parts (paying attention to number consecutively the adjacent 
zones, in order to maximize benefits). Cubic elements have also 
been tried in the zone surrounding the cracks but without any 
improvement in accuracy. A satisfactory agreement of the results 
has been obtained with a relatively small modelling effort, 
compared with the partners of  SMAAC project (a BRITE-
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Fig. 15a. Hole bearing traction on the deformed contact area for 
the pin-loaded two hole plate 

Fig. 15b. Pin bearing traction on the deformed contact area for the 
pin-loaded two hole plate 

Fig. 15c. Pin bearing traction on the deformed contact area for the 
pin-loaded two hole plate 
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Fig. 17. Stress state around the deformed holes of the pin-loaded 
plate (F=1600 N on each pin) 

4.3. Multi region formulation 

Since the procedures developed for FEM generally assume a 
particular type of matrix, i.e. symmetric, positive definite (SPD), 

sparse with small bandwidth, new solution strategies are required 
to solve the different types of matrix produced by BEM. 

In the construction of large, complex models it is often more 
economical to split the model into smaller simpler sub-models. 
These sub-models or regions, which may also have different 
material properties, are modelled independently and then joined 
together along an interface. This strategy leads to an overall 
system matrix which has a blocked, sparse and unsymmetric 
character. This characteristic of multi-region formulation 
significantly extends the range of problems that can be solved, 
due to the large savings in storage and CPU calculations, required 
to solve the matrix, compared with the case of a fully populated 
matrix. However, the sparsity of such matrices is of a different 
type than that of FEM matrices. This has lead to research being 
concentrated on the direct method for solving matrices, 
characterised by the factorisation of the system matrix by Gauss 
elimination or by Choleski’s method. As a matter of fact a direct 
method is implemented in BEASY code for system matrices 
resolution. 

Fig. 18. Overall boundary element mesh used for the two hole 
plate, in bending case 

5. Conclusions 
In conclusion some further remarks are due with regard to the 

opportunity, with a DBEM procedure, to model the zone 
surrounding the cracks with discontinuous elements, in such a 
way to simplify the meshing process and without loss of accuracy. 
Moreover it has been possible to reduce run times and storage 
required, by zoning the whole plate in an adequate number of 
parts (paying attention to number consecutively the adjacent 
zones, in order to maximize benefits). Cubic elements have also 
been tried in the zone surrounding the cracks but without any 
improvement in accuracy. A satisfactory agreement of the results 
has been obtained with a relatively small modelling effort, 
compared with the partners of  SMAAC project (a BRITE-

4.3.  Multi region formulation

5.  Conclusions
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EURAM European project entitled Structural Maintenance of 
Ageing Aircraft) [5-8] and other authors [9].  

Further improvement in the BEASY code will be necessary in 
order to lighten computational times. 

The presented detailed analysis aimed at SIF’s assessment on 
a crack of a given length provide the basis for further 
development related to crack propagation analysis [10-11] and 
residual strength assessment [12]. The crack propagation 
simulation for specimens made of specific materials (described in 
[13-16]) and for a shaft-hub coupling [17] is currently under 
development.
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