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AbstrAct

Purpose: The paper presents some results of the research connected with the development of new approach based 
on the neural network to predict the chemical composition and cooling rate to the mechanical properties of Al–
Si–Cu cast alloys. The independent variables in the model are chemical composition of Al–Si–Cu cast alloys and 
cooling rate. The dependent parameters are hardness, microhardess, yield strength and apparent elastic limit.
Design/methodology/approach: The experimental alloy used for training of neural network was prepared at the 
University of Windsor (Canada) in the Light Metals Casting Laboratory, in a 10 kg capacity ceramic crucible. 
Thermal analysis tests were conducted using the UMSA Technology Platform. Compression tests were conducted 
at room temperature using a Zwick universal testing machine. Prior to testing, an extensometer was used to 
minimize frame bending strains. Compression specimens were tested corresponding to each of the three cooling 
rate. Rockwell F–scale hardness tests were conducted at room temperature using a Zwick HR hardness testing 
machine. Vickers microhardness tests were conducted using a DUH 202 microhardness testing machine.
Findings: The results of this investigation show that there is a good correlation between experimental and predicted 
dates and the neural network has a great potential in mechanical behavior modeling of Al–Si–Cu castings.
Practical implications: The worked out model can be applied in computer system of Al–Si–Cu casting alloys 
selection and designing for Al-Si-Cu casting parts.
Originality/value: Original value of the work is applied the artificial intelligence as a tools for designing the 
required mechanical properties of Al-Si-Cu castings.
Keywords: Artificial intelligence methods; Numerical techniques; Mechanical properties

1. Introduction 
Cast aluminum alloys are important construction materials, 

which are used in various fields of technology. Because of their 
low density, relatively low melting point, good heat and electrical 
conduction, low thermal expansion coefficient, good castability 
and low casting shrinkage, they are mainly used in car 
manufacturing as: piston castings, cylinder head castings, engine 
blocks, structural supporting reinforcements and elements 

absorbing crash impact. Aluminum alloys are also widely used in 
production of household goods, as well as in telecommunication 
and information technology [1-3].  

The main characteristic of neural networks is the ability to 
generalize knowledge for new data not provided during learning 
process. It is not necessary for neural networks to gather data and 
have access to entire database containing knowledge on predicted 
issue. They also show tolerance to discontinuity, random 
disturbances or shortage in learning set. Such characteristics allow 
their application where there are problems with data 
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transformation, analysis, sorting and classification along with 
prediction or controlling on their basis of a certain process. 
Research carried out by Prof. L. A. Dobrzanski’s team [4-10] has 
shown that the neural network models are a useful tool to predict 
materials engineering phenomena. They have facilitated 
formation of numerical models describing phases kinetic 
transformations in working steel. Results obtained from neural 
networks turned out more precise than the ones obtained from 
empirical calculations. 

This article presents the application of neural networks for 
calculation of yield strength (YS), apparent elastic limit (EL), 
hardness (HRF) and matrix microhardness ( HV0,025) in 
relationship to chemical composition and cooling rate. 

2. Materials and experimental 
procedure

2.1. Materials for training Neural Networks  

Formation of a numerical model that allows calculation of the 
characteristical temperature, microstructural features and 
mechanical properties depending on chemical composition and 
cooling rate has been determined by working out a suitable set of 
experimental data. 

The set of representative data including: mass concentration 
of elements, cooling rate, EL, YS, HRF and HV0,025 has been 
elaborated through own research, and the results from specialist 
publications [3, 11-16]. The range of concentration of alloy 
elements and cooling rates has been presented in Table 1. 

Table 1. 
Range of mass concentration of elements and cooling rates (CR) 
in investigated Al-Si-Cu hypoeutectic alloys 

Mass concentration of elements, wt % 

R
an

ge

Si Fe Cu Mn Mg Zn Ti C
R

,  
ºC

 /s
 

min 5 0,08 0,006 0 0,02 0 5 0,03 

max 11,9 1,35 4,64 0,6 1,28 2,9 11,9 2,5 

%Sr+%Ni+%Sn+%Pb+%Na%Ca 0,3

The gathered set of data designed for formation of a 
numerical model determining: EL, YS, HRF and HV0,025 in 
relation of the chemical composition and cooling rate has been 
divided into two subsets: the learning set and the validation set. 
The data have been divided in proportion of 75% for the learning 
set and 25% for the validation set. The division into two sets has 
been made random.  

In order to control the learning correctness of neural 
networks, data obtained from a metallurgical experiment have 
been used. The results of the experiment have been used to make 
a test-verification set. The data used in the process of learning and 
testing have been normalized by means of the minimax function 
that transforms the domains of variables to range 0, 1 .

2.2. Materials for testing Neural Networks 

The data obtained from the metallurgical experiment have 
been used for testing neural networks. For the sake of research 
in the metallurgical laboratory of the University of Windsor 
there had been made six Al-Si-Cu experimental hypoeutectic 
alloys cooled with three different cooling rates. 

The alloys of chemical content shown in Table 2 were 
casted in an electrical resistance furnace with a ceramic 
melting crucible. The process of melting took place in the 
nitrogen protective atmosphere. Directly before casting of 
ingots, melted metal was degassed for 20 minutes in order to 
eliminate from the alloy hydrogen atoms as one of the learning 
vectors which influenced the liquidus and solidus temperatures 
and was undesirable in the investigated alloys. The melting 
and soaking temperature of the alloy was 850 ºC. Ingots of 45 
mm in diameter and 50 mm in height were cast into thin-
walled cups made of hot-work tool steel. The ingot mass was 
330 g ±10 g. 

Table 2. 
Chemical content of alloys used for neural networks testing 

Mass concentration of elements, wt %, 

A
llo

y
la

be
l 

Si Fe Cu Mn Mg Zn Ti 

7-1 7,17 0,14 0,99 0,11 0,27 0,05 0,08 

7-2 6,98 0,17 1,91 0,01 0,26 0,43 0,09 

7-4 7,45 0,34 3,60 0,25 0,28 0,05 0,13 

9-1 9,09 0,72 1,05 0,36 0,27 0,14 0,07 

9-2 9,03 0,19 2,25 0,01 0,19 0,45 0,10 

9-4 9,27 0,17 4,64 0,01 0,28 0,05 0,09 

%Sr+%Ni+%Sn+%Pb+%Na%Ca 0,95

2.3 Compression, hardness and microhardness 
testing

Samples for compression testing were machined from a 
center of the thermal analyses specimen ingots. The machined 
samples were polished with fine sandpaper to remove any 
machining marks from the surface. Compression tests were 
conducted at room temperature using a Zwick universal testing 
machine. Prior to testing, an extensometer was used to minimize 
frame bending strains. Compression specimens were tested 
corresponding to each of the three cooling rates. 

Rockwell F–scale hardness tests were conducted at room 
temperature using a Zwick HR hardness testing machine. 
Vickers microhardness tests were conducted using a DUH 202 
microhardness testing machine. Load of indenter was  
set at 25 g. 

2.		Materials	and	experimental	
procedure

2.1.		Materials	for	training	Neural	
Networks
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2.2.		Materials	for	testing	Neural	
Networks
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2.4 Evaluate of the Neural Networks 

Variety of neural networks used in the experiment makes it 
necessary to apply number indicators, which allow the evaluation 
of the learning process. The following indicators have been 
regarded as the essential ones: mean network error, standard 
deviation quotient for errors and data, standard deviation for the 
error and the Pearson correlation coefficient (R).  

The mean network error has been calculated according to 
the following: 

n

i
pimi XX

N
E

1

1  (1)

Where: 
E –  mean network error, 
N–  number of data in test set, 
Xmi – i-times value, 
Xpi – i-times value by neural network. 

Standard deviation quotient for errors and data has been 
adopted as a quality quotient of a numerical model made by 
neural networks. The numerical model of relationship between 
the mechanical properties in relation to chemical concentration 
and cooling rate calculated by neural networks can be accepted 
as a correct one provided that the output values given by the 
network contain smaller errors than a simple calculation of 
unknown output value. 

The simplest method for calculation of output value is still 
assumption of an average value of output values for it learning 
and testing sets. In that case, mean error is equal of standard 
deviation for output value in the learning set, whereas standard 
deviation quotient equals one. The smaller network error is, the 
smaller values for the standard deviation quotient become, finally 
reaching zero for the “ideal” forecast [4–7]. 

3. Results and discussion 

This paper presents the technique of determination of 
mechanical properties depending on the cooling rate and chemical 
composition with the application of neural networks. To solve this 
problem the computer system was designed.  

The calculation of EL, YS, HRF and HV0,025 was possible 
thanks to the application of the radial basis functions neural 
network with net k-mean and k-nearest neighbour learning 
algorithms with the search option of the optimal ones in input 
parameters. The designed neural network consists of six inputs 
(Si, Cu, Mg, Fe, Mg, Mn, CR) and four outputs (HRF, HV, EL, 
YS). The standard deviation ratio calculated for the training set is: 
0.628 for microhardness; 0,343 for hardness, 0,32 for elastic limit 
and 0,28 for yield strength. Table 3 shows the values of errors, 
standard deviation ratios and Pearson correlation coefficients (R) 
for the calculated values of microhardness, hardness, elastic limit 
and yield strength . 

Table 3. 
Quality assessment coefficients for applied neural networks for 
calculate of mechanical properties for testing set 
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HV0,025 84,241 5,066 2,94 0,628 0,94 
HRF 76,915 3,227 1,18 0,342 0,97 

EL, MPa 138,79 12,54 1,37 0,32 0,96 
YS, MPa 203,46 9,05 3,44 0,28 0,97 

Figures 1 and 2 show the comparison of real hardness and 
apparent elastic limit with data calculated by neural network. The 
biggest error in the calculation of mechanical properties occurs for 
the determination of microhardness. In 30% of cases the difference 
between the real microhardness and the microhardess calculated by 
the neural networks exceeds +10 HV 0,025. However, this error 
can be acceptable when taking into account the range of 
measurement of the calculated microhardness and while comparing 
the error to the experimentally measurable error value.

Fig. 1. Comparison of experimental determination hardness with 
hardness calculated by applied neural network 

The designed computer system enables the calculation of 
mechanical properties in relation to chemical composition and 
cooling rate. It was possible to perform simulation of the influence of 
cooling rate on: HRF, HV, EL, YS for the experimental AC 
AlSi7Cu alloy. The chemical composition of the tested alloy is 
presented in Table 4. The calculation results are presented in Figure 3. 

Table 4. 
Chemical content of alloys used for prediction of the cooling rate 
influence on the phases transformation temperature, 
microstructure feature and mechanical properties 

Mass concentration of elements, wt %, 
Si Fe Cu Mn Mg Zn Ti AC

AlSi7Cu
7,00 0,15 1,00 0,10 0,2 0,05 0,08 

3.		results	and	discussion

2.4.		Evaluate	of	the	Neural	Networks



Short paper350 READING DIRECT: www.journalamme.org

Journal of Achievements in Materials and Manufacturing Engineering Volume 20 Issues 1-2 January-February 2007

Fig. 2. Comparison of experimental determination EL with EL 
calculated by applied neural network 

Fig. 3. Influence of cooling rate on the mechanical properties of 
AC Al Si7Cu4 casting alloy 

5. Conclusion
The neural network approach appears to be a very powerful 

tool in materials engineering. The results show that the prediction 
of the mechanical properties of the considered Al–Si–Cu alloys 
are in a good compatibility with the experimental data. Obtained 
results show that the model based on the ANN can predict with 
good accuracy such microhardness, hardness, yield strength, 
apparent elastic limit. The network was trained on the data 
obtained in the laboratory tests, and next validated using the data 
from the industrial measurements. The accuracy of values 
evaluated by the ANN model is much higher than that obtained 
from calculations using the classical, experimental models. 
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