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Abstract
Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanical 
interraction in the cement seems to be a significant importance. The paper suggests to adapt the research method 
of low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements have 
also been modified in order to improve their functional properties.
Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamed 
cement without an addition and on samples modified with glassy carbon and titanium. The tests were conducted 
on a servohydraulic fatigue testing machine, MTS-810, with displacement control.
Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, the 
phenomenon of stress cyclic relaxation was observed.
Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the low 
cycle fatigue method takes into account all high value stresses, while cement is being used for endoprostheses 
for many years in the conditions of random stress and deformation courses. Therefore the obtained stress and 
deformation values are bigger than those which would have been obtained in real conditions in the same time.
Practical implications: The low cycle fatigue tests carried out showed how important is the factor of time 
for the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assess 
its usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is a 
characteristic feature for material viscoelasticity enables its regeneration conditioning expected durability of 
endoprosthesis of joints.
Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hip 
joint enables to carry out the tests in a shorter period of time.
Keywords: Fatigue; Biomaterials; Mechanical properties; Modelling

1. Introduction 
In spite of a number of constructional solutions of 

endoprostheses, endoprosthesoplasty with the use of cement is 
still one of the basic procedures in surgical treatment of joints 
[1,2]. The most often implanted joint is the hip joint, being under 
the greatest load in the human organism.  
Durability of the artificial hip joint, especially in the case of 
cement anchoring of endoprosthesis components, depends to a 
large extent on rheological processes, in particular creep and 
relaxation. Surgical cement, being a polymer composition, in a 
model approach represents a classical example of a viscoelastic 

substance [3-11]. A bone can be also treated as a viscoelastic 
material. [12,13]. 
In connection with the rheological properties of the bonds made 
of materials which anchor the endoprosthesis in the femoral bone 
channel, the problem of evaluation of the artificial hip joint’s 
durability is complex. 

From among many properties of surgical cement, which 
influence the durability of cement endoprosthesoplasty, the most 
important for a clinical verification are those which directly 
depend on the action of cyclic loads, both in a short- and a long-
term period [14]. In a 24-hour period, there are periods of both 
physical activeness and periods of rest in a typical patient. They 
are connected with variable characteristics of load imposed on the 
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joint and the cement inside it, the latter being one of the joint’s 
components [15-17]. The phenomenon of cement degradation 
during the person’s movement takes place under the action of 
cyclic changes of loads of high values. Therefore, they can be 
defined with high probability as fatigue in the range of a small 
number of cycles. Bearing this in mind, the authors have made an 
evaluation in this paper of cement behaviour in an artificial hip 
joint, applying the low-cycle fatigue testing method. 

2. Materials and method 
Fatigue tests were conducted on samples made from cement 

of the manufacturer’s name Palamed 40 without an addition and 
on samples modified with glassy carbon and titanium. By adding 
glassy carbon in the form of powder of 10-160 µm granulation 
and titanium particles of 25-150 µm size and 3.2% mass fraction, 
an attempt was made to modify the applied PMMA-based (methyl 
polymethacrylate) cements for the purpose of decreasing their 
high curing temperature and shrinkage in the polymerization 
process. Creation of the polymer-ceramic compositions is the 
future direction of the polymer application [18,19]. Carbon, as a 
material compatible with a living organism, has found an 
application in medicine [20,21]. The titanium alloys are applied as 
a load bearing implant in orthopedic surgery [22,23]. 

The strength properties: ultimate compressive strength Rc and 
ultimate bending strength Rg as well as Young’s modulus 
elasticity E of the composites obtained do not significantly differ 
when compared to the respective properties of cement without 
such addition (Fig. 1 and 2). 
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Fig. 1. Strength properties of Palamed 40 cement modified with 
glassy carbon ( C ) and titanium ( Ti ) 

The tests were conducted on a servohydraulic fatigue testing 
machine, MTS-810, with displacement control. The machine is 
equipped with a digital control system, TestSTAR II. In order to 
ensure precise collection of all values of force, stroke and 
deformation, the tests were carried out using the TestWARE SX 
programme.  A change of displacement was modelled with a 
triangular cycle of 0.25 Hz frequency. The characterization of the 
cycle is presented in Fig. 3 and of the tests’ algorithm, in Fig. 4. 

For the tests, a method of cyclic loading of the samples was 
assumed which induces variable stresses in the area of tensile 

stresses. The action of tensile stresses is particularly adverse to 
cement in a proximal area of the bone-prosthesis system [16,24], 
since it may lead to cement cracking [12,16,25-29]. The method 
of cyclic load assumed for the tests was one where variable 
stresses are induced in the area of tensile stresses from zero to the 
maximum value of ca. 17 MPa. The values of the stresses are 
similar to those of tensile stress, obtained in the model 
investigations presented in the literature [30,31] and, at the same 
time, ca. 2 times lower than the tensile strength Rm of surgical 
cement [31]. Thus, the most strict research conditions were 
assumed for the cement. According to the literature [4], it is 
recommended for viscoelastic materials to induce load in the form 
a predefined strain (kinematic load). With this in mind, in the 
low-cycle fatigue tests carried out within this study, a method was 
established of loading surgical cement samples, consisting in 
displacement control. It was assumed that maintaining a constant 
value of the displacement range v will have an indirect influence 
on maintaining a constant value of the deformation range, whilst 
the force will be changing as the number of cycle grows. Such 
method of carrying out the fatigue tests enables the modelling of 
the cyclic relaxation phenomenon, characteristic of polymer 
composites which include the investigated surgical cement. 
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Fig. 2. Young’s modulus elasticity for Palamed 40 cement 
modified with glassy carbon ( C ) and titanium ( Ti ) 
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Fig. 3. Triangle shaped cycle of displacements and straines in 
fatigue tests 
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During the tests, diagrams were recorded of load F 
dependence on displacement v of the servo-motor with an 
increase of the number of cycles, N. For all samples of cement 
without an addition as well as those modified with glassy carbon 
and titanium, the recorded dependencies of load change F on 
displacement v in the cycle had the nature of a hysteresis loop 
(Fig. 5). The nature of the dependencies obtained can be 
accounted for by the viscoelastic behaviour of the material. 

Fig. 4. Algorithm of the low cycle fatigue test 

During the fatigue tests, the phenomenon of stress relaxation 
was observed, manifested by a periodical reduction of force F
with the growing number of cycles N, when a constant 
displacement amplitude v was maintained. Where intervals were 
applied during the application of load, the so-called elastic 
recovery occurred. After repeated load imposed on a sample after 
a break of several hours and determining the predefined constant 
value of the v displacement range, the maximum force in the 
cycle assumed the same value as at the beginning of the test. 
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Fig. 5. Exemplary hysteresis loops with increased cycle number 
recorded in the course of low cycle fatigue investigations of 
Palamed 40 cement samples 

The above phenomenon can be accounted for by 
viscoelasticity which, being the property of polymers, is not an 
ordinary sum of Hook’s elastic properties and Newton’s viscous 
properties. It contains another, third component, namely the non-
elasticity phenomenon. It consists in reversible strain having two 
components: one “instantaneous”, proceeding in time shorter than 
the time of the experiment and the other one, “delayed”, which 
requires several minutes, hours, or even longer time to recover the 
initial state [3,4]. 

This is of considerable significance for biofunctionality of an 
artificial joint, since elastic recovery, being a property of 
material’s viscoelasticity, enables, where intervals are applied in 
load imposing, “regeneration” of cement in the human organism, 
which conditions the sufficient durability of the artificial joint.  

The results of durability Nf varied for the investigated 
samples. The samples cracked at random due to the presence of 
pores in the cement as well as fillers which do not undergo 
polymerization. 

3. Conclusion 
Approximation of the results obtained under the study for 

the total cement lifetime in the human organism is difficult. 
Surgical cement operates in an artificial hip joint for many years 
in the conditions of random courses of stresses and strains. 
Modelling of loads imposed on cement in an artificial hip joint, 
when using the low-cycle fatigue testing method, takes into 
account only the action of stresses of the highest values. 
Therefore, the criteria of durability, boundary values of strain or 
stresses, are more strict than those that could be applied for real 
objects. Besides, the manner of using an artificial joint and the 
resultant load imposed on it, including cement as one of its 
components, is an individual quality of the patient, his/her 
physical activity and physiological factors. 
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