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Abstract
Purpose: The aim of this paper was developing a project of computer aided method for designing the chemical 
composition of steel with the assumed CCT diagram.
Design/methodology/approach: The purpose has been achieved in four stages. At the first stage characteristic 
points of CCT diagram have been determined. At the second stage neural networks have been developed, and 
next CCT diagram terms of similarity have been worked out- at the third one. In the last one steel chemical 
composition optimization method has been developed.
Findings: The algorithm was created in this paper, that allowed to design the chemical composition of steel 
with the assumed CCT diagram.
Research limitations/implications: The created method for designing chemical compositions is limited by 
established ranges of mass concentrations of elements. The methodology demonstrated in the paper makes it 
possible to add new grades of steel to the system.
Practical implications: The method worked out may be used in computer steel selection systems for the 
machines parts exposed to heat treatment.
Originality/value: The presented computer aided method makes use of neural networks, and may be used for 
selecting the steel with the required structure after heat treatment.
Keywords: Computational material science; Artificial intelligence methods; CCT diagram

1. Introduction 
Steels is the most commonly used material in today’s 

engineering. The advantage of steels over other engineering materials 
lies in years of completed extensive research regarding its 
technological applications, and their influence on properties of 
materials, popularity and multiple applications, and the ability to use 
scraps as metallic charge in steel manufacturing process. The heat 
treatment process is often used to improve mechanical properties of 
constructional steel and engineering steel [1]. 

Continuous cooling transformation (CCT) diagrams are used in 
order to determine steel’s properties like hardness, microstructure 
after hardening, tempering or full annealing. The diagrams show 
curves of the transformation-start temperatures (Ts) and 

transformation-finish temperatures (Tf) for all steel transformations 
with assumed chemical composition [1, 2–5]. Process of creating 
CCT diagram is very time-consuming and expensive. In order to 
reduce the necessary time and costs involved, a computer application 
was developed, which computes CCT diagrams for steels with 
assumed chemical composition. The application takes advantage of 
neural networks and extensive set of experimental data [6]. 

Artificial neural networks are systems that map the work of a 
human’s brain. Processing capacity of computers is far more efficient 
than that of a human being, but a computer cannot learn by 
experiment, it cannot associate, predict, or make rational decisions. 
These properties are advantages of neural networks. The networks are 
built by many artificial neurons, which are connected by a net. Each 
neuron calculates the weighted sum of input signals and compares it 
to the threshold. Weights are determined by the process itself [7, 8]. 
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Artificial neural networks are widely used in medicine, economy, 
engineering, and materials engineering [6, 9 – 15]. 

Currently, a reverse process to predicting the course of the 
supercooled austenite transformations is being developed with 
employment of neural networks. The purpose is to search for the 
chemical composition of steel with the assumed CCT diagram. The 
process causes difficulties, because one CCT diagram can correspond 
to many chemical compositions. The whole task is hard to complete, 
because it requires melting of steel with assumed chemical 
composition, and creating a CCT diagram by dilatometric methods. It 
is also difficult to define a numerical index of CCT diagrams 
similarity. Moreover, particular transformations can shift or disappear 
on the diagram, depending on chemical composition of steel.  

2. Material and methodology 
Steels for hardening and tempering were used to develop an 

application for designing the chemical composition of steel with 
the assumed CCT diagrams. Ranges of mass concentrations of 
elements are shown in Table 1.  

Table 1. 
Ranges of elements mass concentrations 

Elements mass concentrations (%)
C Mn Si Cr Ni Mo 

Minimum 0.076 0.00 0.12 0.00 0.00 0.00 
Maximum 0.760 1.56 1.37 1.55 1.72 0.72 

Algorithm used to develop a computer application is presented 
in Fig. 1. At first, 3000 random chemical composition were 
generated. For all generated compositions, CCT diagrams were 
computed by the computer program [6].  

Terms of resemblance are difficult to formulate, which is the 
result of large number of data points on one CCT diagram. 
Preliminary computations were presented hereunder. An effort was 
undertaken to create system, which can determine CCT diagram in a 
clear-cut matter. A characteristic data was assumed and read from 
diagrams. The characteristic data was described as points, which were 
presented in Fig. 2.: 

for martensitic transformation: 
temperature of start-transformation (point 1), 
maximum time wherein transformation occurs (point 1); 

for bainitic transformation: 
temperature of the smallest supercooled austenite life 
point (point 2), 
time of the smallest supercooled austenite life point (point 2), 
temperature of start-transformation at maximum time 
wherein transformation occurs (point 3), 
maximum time wherein transformation occurs (point 3); 

for pearlitic transformation: 
temperature of start-transformation at minimum time 
wherein transformation occurs (point 4), 
minimum time wherein transformation occurs (point 4); 

for ferritic transformation: 
temperature of start-transformation at minimum time 
wherein transformation occurs (point 5), 
minimum time wherein transformation occurs (point 5). 

At the next stage, ten neural networks were designed with 
employment of “Statistica Neural Networks 4.0 F” application. 

Each network computes a separate characteristic point. Neural 
networks quality was evaluated with three regression analysis 
components: mean absolute error, standard deviation for error and 
data and Pearson’s correlation coefficient. 

Fig. 1. Algorithm used to develop computer application 

Fig. 2. CCT diagram with characteristic points marked  

Data read from computed CCT diagrams was used in the 
design process. Data consisted of chemical compositions of steel 
(mass concentration of 6 elements) as input variables, and 
temperature, or time characteristic points, as output variable. 
Because of a significant difference between minimum and 
maximum values of data points (normalized time (tp) was 
calculated by the following formula):  

4 tt p
, (1) 

where: t - time taken from CCT graphs, 
tp - normalized time. 

Data set was divided into three subsets: training (1500 data), 
validating (750 data) and testing (750 data) ones. 

Application, that computes chemical composition of steel with 
assumed CCT diagram, is based on an algorithm, presented in Fig. 3.  

Chemical compositions are randomly generated (A) at the 
ranges of mass concentrations of elements shown in Table 1. 
Number of data set (random chemical composition) N is limited 
by the expected value of error Eu or by number of iteration. For 
each chemical composition, characteristic points are computed 
(B) and an error E is calculated (C). Total error E is a sum of 
relative errors i for each of temperature and time value points 
(Fig. 2), and is given by: 

10

1i
iE . (2) 
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Fig. 3. Flow chart of algorithm for selection chemical composition 
of steel with assumed CCT diagram 

Relative errors
i
, for each of temperature and time computed 

value points xci related to expected value of time or temperature 
xei, are given by 
,

ei

ciei
i x

xx . (3) 

After total error calculations, chemical composition and total 
error values are added to the table, that stores chemical 
compositions with the best results. Every time a new chemical 
composition is added in, the table is sorted (D). The result of 
sorting is a table with chemical composition of steel the most 
matching the assumed CCT diagram.  

3. Results and discussion 
The result of design and optimisation process is set of ten neural 

network models, which are characterized by error of value, standard 
deviation and Pearson’s correlation coefficient. The characteristics, 
that were a base of valuation, were presented in Table 2 and Table 3. 

Pearson’s coefficient of correlation is greater or equal to 0.98 
for all but one neural networks computing values of normalized 
time, which points to a very strong relationship between actual 
and forecasted values.  

Table 2.  
Regression statistics of neural networks calculating normalized time 
values of characteristic points of CCT diagram in testing data set  

Point no Error, s Standard 
deviation

Pearson’s correlation 
coefficient r 

1 0.19 0.21 0.98 
2 0.07 0.15 0.99 
3 0.22 0.15 0.99 
4 0.16 0.16 0.99 
5 0.34 0.56 0.83 

Table 3. 
Regression statistics of neural networks, calculating temperature 
values of characteristic points of CCT diagram in testing data set 

Point no Error, °C Standard 
deviation

Pearson’s correlation 
coefficient r 

1 0.86 0.04 0.99 
2 5.70 0.23 0.97 
3 5.87 0.21 0.98 
4 4.33 0.37 0.93 
5 22.43 0.25 0.97 

Quality of networks for calculated values of characteristic 
temperature points can vary. The highest quality is achieved for 
the network calculating the first point – start temperature of the 
martenistic transformation.). It’s correlation coefficient values 
are close to 1 (0.99), which points to almost perfect estimates. 
The lowest quality network is the one computing temperature of 
pearlitic transformation (point 4). This result is most likely 
connected with inexistent pearlitic transformation for some 
chemical compositions of steel. 

The developed computer application takes advantage of the 
algorithm (Fig. 3) which joins operations of all ten designed 
artificial neural network models. As a result, the application 
allows for designing of chemical compositions of steel with the 
CCT diagrams corresponding to the most accurate values. In the 
application, a user can assumed the position of all points, the 
number of chemical compositions, and expected values of the 
total error. Chemical compositions with values of total error are 
presented in a summary table. The application allows to save the 
results to a file in  a form of a report. The application window is 
presented in Fig. 4. 

Fig. 4. Window of application for selection the chemical 
composition of steel with assumed CCT diagram 

A solution to the hypothetical scenario for points in table 4 
yields matching chemical composition of steel with the smallest 
value of the total error (table 5). 

3.	�Description of results
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Table 4. 
Demand characteristic points of CCT diagrams 

Point no. Value of time, s Value of temperature, °C 

1 50 290 
2 2 400 
3 40 550 
4 30 650 
5 7500 720 

Table 5. 
Computed steel chemical composition with errors 

%C %Mn %Si %Cr %Ni %Mo Error 
0.56 0.47 0.35 0.21 0.10 0.10 0.853 

CCT diagrams corresponding to computed steel chemical 
composition is presented in Fig. 5. 

Fig. 5. CCT diagram for steel with concentrations: 0.56% C, 
0.47% Mn, 0.35% Si, 0.21% Cr, 0.10% Ni, 0.10% Mo 

4. Conclusions 
This paper presents a project of computer program for 

designing of chemical composition of steel with assumed CCT 
diagram. The application is developed by selection of characteristic 
points for CCT diagrams, creation of neural network models, 
probability analysis, and proper optimization method. The 
application joins all ten artificial neural network models designed 
during the process and is an attempt to solve the reverse process to 
predicting the course of the supercooled austenite transformations. 
Because of a limited range of mass concentrations of elements for 
grades of steel for heat treatment, application’s usability is limited 
and applied to developed neural network models only. To extend its 
use, an extension of the range of mass concentration is necessary. 
Other possibilities for enriching its use include selection of other 
alternative characteristic points of CCT diagrams. Implementation 
of these solutions, however, will result in a necessity to develop a 
better optimization algorithms, which add significant complexity.  

Another way to address the problem can be adding a range for all 
process changes during optimization (calculation of the total error).  
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