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ABSTRACT
Purpose: The optimal setting of machining parameters that may be realized via a suitable model/controller is 
an important concern to fulfill the overall objectives in machining.
Design/methodology/approach: The present paper proposes an approach for determination of optimal setting 
of machining parameters in high speed climb milling operation through an TSK-type fuzzy logic controller 
(TSK-FLC). A novel approach is proposed here which combines the techniques of linear regression (LR) and 
genetic algorithm (GA) to utilize the advantages of each other, in order to develop an efficient FLC  for high-
speed milling.
Findings: Modeling of manufacturing process enables generating of manufacturing data and knowledge 
representation in machining process. Comparisons of results with real experimental data as well as those 
obtained by other common methods of modeling show the effectiveness of the FLC.
Research limitations/implications: The design approach of fuzzy logic controller uses experimental data for 
learning. The shape of fuzzy subsets as well as the structure(s) of rule consequent functions are the important 
concern for optimal knowledgebase (KB) of a FLC. Use of the advantages of both LR and GA makes it possible 
to achieve optimal KB of FLC.
Practical implications: Use of developed FLC results in improved productivity and efficiency of machining 
process via the setting of optimal values of cutting parameters and the possiblilty to develop automatic 
manufacturing system by online determination of machining parameters.
Originality/value: The paper describes a method for desiging a FLC for manufacturing process by a 
combination of LR and GA, which leads to eliminate a long regression function as required in standard linear 
regression method.
Keywords: Artificial intelligence methods; TSK-type FLC; High-speed milling; Surface roughness

1.  Introduction1. Introduction 

In automobile and aerospace industries, there is an immense 
need of good surface finish and dimensional precision of a 
machined part, as the key factors that are owing to the advantage 
of improved functional performance of the component. With the 
introduction of new technologies such as high speed machining, it 
is possible to achieve these requirements in an efficient way. 
However, in high-speed milling (HSM) there are four primary 

machining parameters (cutting speed, feed per tooth, axial depth 
of cut, and radial depth of cut) whose optimal values greatly 
influence to attain a desired surface roughness on the machined 
surface. In past literatures, it has been found that several methods 
were adopted by various researches to construct suitable model(s) 
for milling operation [1-8]. An investigation is made to improve 
the surface finish of stamping dies in high speed milling by proper 
selection of cutting tools such as coated carbide tool and PCBN 
(polycrystalline cubic born nitride) through extensive 
experimental studies [9].  

1.  Introduction
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However, due to complexity as well as non-linear interaction 
among the machining parameters, it is very difficult to develop an 
efficient model using conventional approaches. Thus, the 
techniques to build a model/controller based on example data are 
growing interest in recent years. However, due to several factors 
as well as inherent human error, some of the data samples those 
are observed/measured though experimentation may be 
contaminated with noisiness and these cannot be recognized or 
identified before hand. In contrast, each sample in the training 
data set effects the construction of model. Therefore, the model 
developed based on the example data where some of them 
affected with noisiness may not be able to make an accurate 
prediction. In the past literatures, it has been observed that the 
models that are developed base on example data, do not consider 
the intrinsic noisiness associated to the measured data samples. 
One of the primary objectives of this work is also to incorporate 
this aspect of noisy data in building a model/controller. 
In the present work, an TSK (Takagi-Sugeno-Kang)-type FLC is 
constructed in order to determine an optimal setting of machining 
parameters in high-speed climb milling to obtain a desired surface 
roughness on workpiece. The performance of a FLC depends 
mainly on its KB, which consists of rule base (RB) and input 
variables’ membership function distributions (MFDs). In this an 
approach adopted which combines the techniques of LR and GA 
to utilize the advantages of each other in order to develop an 
efficient KB of FLC to determine the optimal machining 
parameters in high-speed climb milling [10].  

The effectiveness of the TSK-FLC is verified through 
experimental data. Later results of the TSK-FLC are compared 
with conventional modelling method such as standard regression 
equation based on design of experiment technique to analysis its 
superior prediction capability. 

2. TSK-type FLC
The TSK-type FLC is based on the fuzzy rule-based system 

[11, 12]. The TSK model has the following form of fuzzy rules:  
If x1 is Ar

1 and x2 is Ar
2 and…and xn is Ar

n, then y = fr(x1,…, xn).
where Ar

1, . . . , Ar
n are fuzzy subsets of the input variables x1, …, 

xn, respectively of the rth rule. The output function of rth is 
considered as a polynomial function in the form  
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where ar
j are the function coefficients of the corresponding rth rule 

consequent and � �xn,...,x1f r
j

 are the sub-functions characterized 

by the input variable(s) and the associated exponential 
parameter(s). 
The overall output of the TSK-FLC can be obtained for the input 
tuple (x1, x2, …., xn) using the following empirical expression. 
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where n  is the number of input variables that occur in the rule 
premise, R is the number of rules in the rule base. 
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v  is the membership function value for the 

input variable xv. �  is the product representing a conjunction.  

3. Design of KB of TSK-FLC using a 
combined LR & GA approach

The output of an TSK-type fuzzy rule is expressed by a linear 
combination of the input variables. A typical TSK-type fuzzy rule 
used to design the RB in order to model the input-output 
relationship in high speed milling looks as follows:  
If cutting speed (v1) is Low (L) AND feed per tooth (v2) is Low 
(L) AND axial depth of cut (v3) is Low (L) AND radial depth of 
cut (v4) is Low (L) THEN surface roughness is  

v4
p4c4v3

p3c3v2
p2c2v1

p1c1y ���� , (3) 
where c1, c2, c3, and c4 are the function coefficients, and p1, p2, p3
and p4 are the exponential parameters of the respective input 
variables.  

The input variables of the FLC are assumed to have semi-
trapezoidal MFDs as shown in Figure 1. Each input variable is 
considered to have two fuzzy subsets that are characterized by the 
linguistics terms Low L and H, hence there could be a total of 
2x2x2x2=16 rules in the RB of the FLC. A semi-trapezoidal MFD 
is defined by two parameters b1 and d1.  
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Fig. 1. Membership function distributions of the input variables 

The performance of a fuzzy model mainly depends on the RB 
with the proper values of related function coefficients and the 
variable’s exponential parameters in the rule consequents, and the 
optimised MFDs of the input variables. 

In this work, an approach is utilized which combines LR 
technique and GA to determine the function coefficients as well 
as the exponential parameters of input variables of the rule 
consequents [10]. The GA is used to find values of exponential 
parameters of input variables and optimize the MFDs 
simultaneously. On the other hand LR method is combined with 

TSK-FLC in order to determine the function coefficients of the 
selected rule consequents in the framework of GA [13].

A GA works iteratively by successively applying the three 
GA-operators (population size (Ps), crossover probability (Cp) 
and mutation probability (Mp)) until the specified termination 
criterion of certain fitness value is achieved [14]. As, a GA is 
computationally expensive the GA-based optimisation is carried 
out off-line. During optimization of MFDs, the variations of 
parameters  (b1, d1) for cutting speed, (b2, d2) for feed per tooth, 
and (b3, d3) for axial depth of cut and (b4, d4) for radial depth of 
cut as shown in Figure 1 are taken carefully. The values of the 
exponential terms of the input variables in the rule-consequents 
are endorsed to diverge in the range of 0 to 1 during GA-based 
optimization.

4. Experimentation of HSM
The input-output data samples are measured though an 

experimentation conducted in a HSM centre with vertical-spindle 
(Deckel Maho DMU 50 Evolution) [15]. W-Nr. 1.2344 hardened 
steel of 50-54 HRC was used as the workpiece material. A cutting 
tool of KOBELCO series MIRACLE: (Al, Ti) N coated micro 
grain carbide, two flute ball end mill VC2SBR0300 of diameter 6 
mm was used for the machining operation. The effective 
roughness of the machined surface was measured using a Taylor-
Hobson Form Taylsurf Series 2 profile rugosimeter. In order to 
determine the surface roughness value, a total evaluation length of 
4.8 mm (6x0.8 mm), a nominally 2 micron stylus tip with a 0.8 
Gaussian cut-off filter and a bandwidth ratio of 300:1 were 
considered. A stylus speed of 0.5 mm/sec was used in conjunction 
with a 0.8 mN static force with a stylus cone angle of 90˚. The 
average value of six different successive readings is considered as 
the effective roughness value. Using the above experimental 
methodology 81 different input-output data samples as shown in 
Figure 2 are measured in order to construct the fuzzy model and 
another 10 data samples to validate the model performance for the 
climb milling operation. 

Fig. 2. Experimental training data samples of 81 cases 

5. Results and discussion
In order to determine the optimal values of the function 

coefficients and exponential parameters of rule consequents, 81 
experimental data as discussed in Section 4, are used in GA-based 
optimization. In order to have a better reliability of the FLC, the 
performance of the FLC is to be uniformed throughout the entire 
input space. To achieve such kind of consistancy of results from 
an FLC in every region of the input space, the errors of all 

training data samples should have an equal importance for 
minimizing the GA-fitness value. Thus, The fitness value of a GA 
solution is estimated based on the percentage error of each 
training data sample. The error is the deviation of the result 
(surface roughness) of the FLC from that of the desired one. Since 
the error may be positive or negative, the absolute value of the 
error is considered in determining the average percentage error as 
a fitness value of GA solution.  

The optimal setting of GA parameters those are obtained 
through parametric study are Ps=250; Cp= 0.92 and Mp=0.01. 
The optimised values of the parameters related to MFDs of the 
input variables as obtained after GA-based optimization process 
are b1= 20.9971; d1=3.53861; b2=0.01615; d2=0.00541; 
b3=0.08113; d3=0.04682; b4=0.05303; d4=0.00782. 

The regression equation obtained using factorial design 
method based on the same experimental data used to develop the 
TSK-fuzzy model, is expressed by the following empirical 
expression [15]. 
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Table 1 shows the comparative results of TSK-FLC and the 
standard regression equation (as describled in Equation (4)) with 
real experimental data. In Table 1, Rexperimental, RTSK_model and 
Rreg_equ reprent the experimenal value, output obtained by FLC 
and standard regression equation, respectively. Error I and Error 
II are the absolute values of deviations of results (in percentage) 
of the TSK-FLC and standard regression equation from those 
obtained using experimentation, respectively, to predict surface 
roughness in high speed climb milling. It has been observed that 
for almost all cases, the TSK-FLC performs far better than the 
model developed using standard regression equation. This is 
obvious, because this model is described by a single regression 
equation, which is derived by a conventional regression method 
alone. Therefore, it may not be able to determine the optimal 
values of function coefficients for a given structure of regression 
function with fixed values of exponential parameters of input 
variables. Moreover such this regression equation is complex. On 
the other hand, a TSK-FLC comprises of several (simpler) 
regression functions as the consequents of its rules. The function 
coefficients are obtained by a weighted linear regression method 
while the input variable’s exponential parameters are optimised 
using GA. Since a GA has a strong search power capability, it is 
possible to obtain the structures of rule consequent functions with 
the optimal values of exponential parameters of input variables. 
Finally, a suitable combination of these rule consequents based on 
the fuzzy logic concept gives results that show supremacy over 
others obtained using conventional method in order to predict the 
output for a given set of input parameters. Thus, the developed 
TSK-FLC based on the proposed approach of a combination of 
LR and GA is much more reliable and efficient to determine the 
optimal values of machining parameters in high-speed (climb 
milling) milling  namely, cutting speed, feed per tooth, axial depth 
of cut and radial depth of cut to achieve a desired surface 
roughness.

2.  TSK-type FLC

3.  Design of KB of TSK-FLC 
using a combined LR & GA 
approach
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However, due to complexity as well as non-linear interaction 
among the machining parameters, it is very difficult to develop an 
efficient model using conventional approaches. Thus, the 
techniques to build a model/controller based on example data are 
growing interest in recent years. However, due to several factors 
as well as inherent human error, some of the data samples those 
are observed/measured though experimentation may be 
contaminated with noisiness and these cannot be recognized or 
identified before hand. In contrast, each sample in the training 
data set effects the construction of model. Therefore, the model 
developed based on the example data where some of them 
affected with noisiness may not be able to make an accurate 
prediction. In the past literatures, it has been observed that the 
models that are developed base on example data, do not consider 
the intrinsic noisiness associated to the measured data samples. 
One of the primary objectives of this work is also to incorporate 
this aspect of noisy data in building a model/controller. 
In the present work, an TSK (Takagi-Sugeno-Kang)-type FLC is 
constructed in order to determine an optimal setting of machining 
parameters in high-speed climb milling to obtain a desired surface 
roughness on workpiece. The performance of a FLC depends 
mainly on its KB, which consists of rule base (RB) and input 
variables’ membership function distributions (MFDs). In this an 
approach adopted which combines the techniques of LR and GA 
to utilize the advantages of each other in order to develop an 
efficient KB of FLC to determine the optimal machining 
parameters in high-speed climb milling [10].  

The effectiveness of the TSK-FLC is verified through 
experimental data. Later results of the TSK-FLC are compared 
with conventional modelling method such as standard regression 
equation based on design of experiment technique to analysis its 
superior prediction capability. 

2. TSK-type FLC
The TSK-type FLC is based on the fuzzy rule-based system 

[11, 12]. The TSK model has the following form of fuzzy rules:  
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by the input variable(s) and the associated exponential 
parameter(s). 
The overall output of the TSK-FLC can be obtained for the input 
tuple (x1, x2, …., xn) using the following empirical expression. 
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where n  is the number of input variables that occur in the rule 
premise, R is the number of rules in the rule base. 
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input variable xv. �  is the product representing a conjunction.  

3. Design of KB of TSK-FLC using a 
combined LR & GA approach

The output of an TSK-type fuzzy rule is expressed by a linear 
combination of the input variables. A typical TSK-type fuzzy rule 
used to design the RB in order to model the input-output 
relationship in high speed milling looks as follows:  
If cutting speed (v1) is Low (L) AND feed per tooth (v2) is Low 
(L) AND axial depth of cut (v3) is Low (L) AND radial depth of 
cut (v4) is Low (L) THEN surface roughness is  

v4
p4c4v3

p3c3v2
p2c2v1

p1c1y ���� , (3) 
where c1, c2, c3, and c4 are the function coefficients, and p1, p2, p3
and p4 are the exponential parameters of the respective input 
variables.  

The input variables of the FLC are assumed to have semi-
trapezoidal MFDs as shown in Figure 1. Each input variable is 
considered to have two fuzzy subsets that are characterized by the 
linguistics terms Low L and H, hence there could be a total of 
2x2x2x2=16 rules in the RB of the FLC. A semi-trapezoidal MFD 
is defined by two parameters b1 and d1.  
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Fig. 1. Membership function distributions of the input variables 

The performance of a fuzzy model mainly depends on the RB 
with the proper values of related function coefficients and the 
variable’s exponential parameters in the rule consequents, and the 
optimised MFDs of the input variables. 

In this work, an approach is utilized which combines LR 
technique and GA to determine the function coefficients as well 
as the exponential parameters of input variables of the rule 
consequents [10]. The GA is used to find values of exponential 
parameters of input variables and optimize the MFDs 
simultaneously. On the other hand LR method is combined with 

TSK-FLC in order to determine the function coefficients of the 
selected rule consequents in the framework of GA [13].

A GA works iteratively by successively applying the three 
GA-operators (population size (Ps), crossover probability (Cp) 
and mutation probability (Mp)) until the specified termination 
criterion of certain fitness value is achieved [14]. As, a GA is 
computationally expensive the GA-based optimisation is carried 
out off-line. During optimization of MFDs, the variations of 
parameters  (b1, d1) for cutting speed, (b2, d2) for feed per tooth, 
and (b3, d3) for axial depth of cut and (b4, d4) for radial depth of 
cut as shown in Figure 1 are taken carefully. The values of the 
exponential terms of the input variables in the rule-consequents 
are endorsed to diverge in the range of 0 to 1 during GA-based 
optimization.

4. Experimentation of HSM
The input-output data samples are measured though an 

experimentation conducted in a HSM centre with vertical-spindle 
(Deckel Maho DMU 50 Evolution) [15]. W-Nr. 1.2344 hardened 
steel of 50-54 HRC was used as the workpiece material. A cutting 
tool of KOBELCO series MIRACLE: (Al, Ti) N coated micro 
grain carbide, two flute ball end mill VC2SBR0300 of diameter 6 
mm was used for the machining operation. The effective 
roughness of the machined surface was measured using a Taylor-
Hobson Form Taylsurf Series 2 profile rugosimeter. In order to 
determine the surface roughness value, a total evaluation length of 
4.8 mm (6x0.8 mm), a nominally 2 micron stylus tip with a 0.8 
Gaussian cut-off filter and a bandwidth ratio of 300:1 were 
considered. A stylus speed of 0.5 mm/sec was used in conjunction 
with a 0.8 mN static force with a stylus cone angle of 90˚. The 
average value of six different successive readings is considered as 
the effective roughness value. Using the above experimental 
methodology 81 different input-output data samples as shown in 
Figure 2 are measured in order to construct the fuzzy model and 
another 10 data samples to validate the model performance for the 
climb milling operation. 

Fig. 2. Experimental training data samples of 81 cases 

5. Results and discussion
In order to determine the optimal values of the function 

coefficients and exponential parameters of rule consequents, 81 
experimental data as discussed in Section 4, are used in GA-based 
optimization. In order to have a better reliability of the FLC, the 
performance of the FLC is to be uniformed throughout the entire 
input space. To achieve such kind of consistancy of results from 
an FLC in every region of the input space, the errors of all 

training data samples should have an equal importance for 
minimizing the GA-fitness value. Thus, The fitness value of a GA 
solution is estimated based on the percentage error of each 
training data sample. The error is the deviation of the result 
(surface roughness) of the FLC from that of the desired one. Since 
the error may be positive or negative, the absolute value of the 
error is considered in determining the average percentage error as 
a fitness value of GA solution.  

The optimal setting of GA parameters those are obtained 
through parametric study are Ps=250; Cp= 0.92 and Mp=0.01. 
The optimised values of the parameters related to MFDs of the 
input variables as obtained after GA-based optimization process 
are b1= 20.9971; d1=3.53861; b2=0.01615; d2=0.00541; 
b3=0.08113; d3=0.04682; b4=0.05303; d4=0.00782. 

The regression equation obtained using factorial design 
method based on the same experimental data used to develop the 
TSK-fuzzy model, is expressed by the following empirical 
expression [15]. 
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Table 1 shows the comparative results of TSK-FLC and the 
standard regression equation (as describled in Equation (4)) with 
real experimental data. In Table 1, Rexperimental, RTSK_model and 
Rreg_equ reprent the experimenal value, output obtained by FLC 
and standard regression equation, respectively. Error I and Error 
II are the absolute values of deviations of results (in percentage) 
of the TSK-FLC and standard regression equation from those 
obtained using experimentation, respectively, to predict surface 
roughness in high speed climb milling. It has been observed that 
for almost all cases, the TSK-FLC performs far better than the 
model developed using standard regression equation. This is 
obvious, because this model is described by a single regression 
equation, which is derived by a conventional regression method 
alone. Therefore, it may not be able to determine the optimal 
values of function coefficients for a given structure of regression 
function with fixed values of exponential parameters of input 
variables. Moreover such this regression equation is complex. On 
the other hand, a TSK-FLC comprises of several (simpler) 
regression functions as the consequents of its rules. The function 
coefficients are obtained by a weighted linear regression method 
while the input variable’s exponential parameters are optimised 
using GA. Since a GA has a strong search power capability, it is 
possible to obtain the structures of rule consequent functions with 
the optimal values of exponential parameters of input variables. 
Finally, a suitable combination of these rule consequents based on 
the fuzzy logic concept gives results that show supremacy over 
others obtained using conventional method in order to predict the 
output for a given set of input parameters. Thus, the developed 
TSK-FLC based on the proposed approach of a combination of 
LR and GA is much more reliable and efficient to determine the 
optimal values of machining parameters in high-speed (climb 
milling) milling  namely, cutting speed, feed per tooth, axial depth 
of cut and radial depth of cut to achieve a desired surface 
roughness.

4.  Experimentation of HSM

5.  Results and discussion
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Table 1.  
Comparision of results 

No of 
casess 

V1
(m/min) 

V2
(mm)

V3
(mm)

V4
(mm)

Rexperimental
(micron)

RTSK_model Percentage 
Error-I

Rreg_equ Percentage 
Error-II

1 150 0.02 0.1 0.1 0.21673 0.21186 2.247 0.29186 34.700 
2 150 0.02 0.1 0.3 0.24766 0.24160 2.446 0.22460 9.311 
3 150 0.02 0.3 0.1 1.11283 1.12381 0.986 1.06772 4.054 
4 150 0.02 0.3 0.3 0.93807 0.91283 2.690 1.00046 6.650 
5 150 0.06 0.1 0.1 0.35369 0.34812 1.574 0.36002 1.790 
6 150 0.06 0.1 0.3 0.34434 0.33957 1.385 0.29276 14.98 
7 150 0.06 0.3 0.1 0.99341 1.00015 0.678 0.99956 0.620 
8 150 0.06 0.3 0.3 0.89143 0.88092 1.179 0.93230 4.580 
9 250 0.02 0.1 0.1 0.20214 0.20643 2.123 0.16668 17.540 
10 250 0.02 0.1 0.3 0.20844 0.21843 4.792 0.23394 12.200 
11 250 0.02 0.3 0.1 0.98330 0.93406 5.007 1.05837 7.630 
12 250 0.02 0.3 0.3 1.11840 1.11938 0.087 1.12563 0.650 
13 250 0.06 0.1 0.1 0.24439 0.24938 2.041 0.23485 3.904 
14 250 0.06 0.1 0.3 0.38016 0.40013 5.253 0.30210 20.530 
15 250 0.06 0.3 0.1 1.08217 1.06120 1.937 0.99021 8.498 
16 250 0.06 0.3 0.3 1.08790 1.10155 1.254 1.05747 2.797 

6. Conclusion
In the present work, an TSK-type FLC is designed to 

determine the machining parameters of high speed climb milling 
operation to obtain a desired surface roughness on hardened 
steel. In order to design a suitable FLC, a combined approach of 
GA and weighted LR is adopted. The performance of the FLC is 
judged by a comparative study of its results with the 
experimental data as well as that obtained by regression 
equation obtained using factorial design. Both the FLC and 
regression equation are learned with the same experimental 
data. From this study, it is revealed that the FLC outperforms 
than conventional regression equation and the designed FLC 
may be adopted for developning automatic manufacturing 
system for climb milling operation. 
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