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Properties

Abstract

Purpose: of this paper is evaluation of macroscopic and microscopic residual stresses and their influence on 
nucleation and development of cracking in Fe-Al-C cast alloy
Design/methodology/approach: In the case of particular chemical composition of Fe-Al-C alloy phenomena 
of its self-disintegration appears. Fracture mechanic methods with additional consideration of residual stresses 
were applied. The last one was measured by X-ray diffraction method.
Findings: Measurnaments and calculations proved that crack nucleation and development is controlled by 
diffusion of hydrogen and oxygen to chemical reaction with Al4C3 precipitations. This process is enhanced by 
existing residual stresses. When total stress approaches to critical stress level the cracks gradually develops.
Research limitations/implications: Microstructure of high-aluminium alloy (35.5 wt.% Al) consisted of brittle 
matrix with Al4C3 precipitations. Microstructure of this matrix appeared in a form of intermetallic compound 
as a superlattice FeAl.
Practical implications: These kind of intermetallics is practically applied in high temperature working machine 
components. In many cases they are under high level of residual stresses. Any progress in describing of 
cracking in this type of microstructure has real practical importance. Modeling of crack nucleation and farther 
its growth using finite elements method confirmed with real measurements make an interesting approach in 
characterization of cracking of the alloys..
Originality/value: Morfology of Al4C3 precipitation in FeAl superstructure alloy and its self-disintegration 
process can be ruled by chemical composition and solidification conditions. The elaborated physical model of 
cracking can be used to estimate durability of this  Fe-Al-C alloy.
Keywords: Crack resistance; Fracture mechanic; X-ray phase analysis; Computational material science

1. Introduction
Durability of machine parts depends on many factors and one 

of them are interactions having distortion nature.. They appear in 
a form of crystal defects and lattice curvature connected with 
elastic strains/stresses which are created by mechanical, chemical, 
metallurgical and heat flow factors. Among them there are  

welding or assembly stresses [1-6], phase transformations [7] and 
thermal residual stresses. [8-10] and hydrogen interaction as well 
[11]. There are also distortions caused by chemical forces like due 
to chemical reactions between Al4C3 and oxygen and water vapor 
in high aluminium Fe-Al-C cast alloy. This is known phenomena 
which finally produces cracking and self-disintegration [12, 13]. 
Calculation and measurnement of microstresses around grains and 
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carbide precipitation and in intermetallic matrix are presented in 
this work. The level of macroscopic residual stresses were caused 
by solidification process and during degradation Al4C3 carbides in 
a form of plate. 

2. Experimental 
Macro and microscopic residual stresses  were measured with 

X-ray diffraction methods. The difractometer D8 Advance with 
cobalt tube radiation was used. The modified g-sin2 metod with 
grazing incidence angle X-ray diffraction geometry were applied 
[14-16]. This metodolgy anabled tomography like measurnaments 
in non-destructive way. This geometry of diffractin is 
characterized with small and constant incidence angle and with 
constant effective depth of penetration which is regulated with 
incidence angle of X-ray beam [16]. 

Using this non-destructive technique it was possible to repeat 
measurnaments of the same area on the sample versus time of 
chemical reaction and cracking development. A phase analysis, 
lattice parameter and lattice elastic strains can be measured with 
this diffraction [17]. 

Bragg equation and some crystallographic relations were used 
in measurement methodology of residual stresses:  
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where: a- lattice parameter measured in direction defined with 
and angels, dhkl- interplanar distance between crystallographic 
planes {hkl}, - wavelength, - Bragg angle, – angle between 
normal to the sample and normal to diffracting planes {hkl}, –
angle between x axis of the sample and direction of measured 
stress component. 

An elastic strain measured in particular direction can be 
expressed with equation 
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where: d0- interplanar distance between crystallographic planes 
{hkl} in unstressed sample (powder). 

An elastic strain  can be transformed into sample 
coordinates with relation: 
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1,2,3– main strains, a1,a2,a3– direction cosine of the angles 
between strain measurement direction and principal direction 
1, 2, 3. 

Using above equation and Hook’s law for plane stress field, 
principle equation of sin2 diffraction method can be derived: 
[16,17]: 
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where:  = 1cos2+2sin2, 1 i 2 – principle plane stresses, E, 
- elastic mechanical constances. 

A microstresses were measured by X-ray diffraction method 
consisted in diffraction peak analysis. A physical widening of 
diffraction lines  were estimated with assumption of Gauss 
function fitting procedure [18]. 
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here: B– half-width of measured diffraction line, b– half-width of 
reference sample. 

Experimentally evaluated physical widening is used to 
calculate microstrains and microstresses [14,18]:  


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Substituting microstrains to Hook’s law microstresses (the 
second order of residual stresses) can be evaluated. Their range is 
of order of FeAl grains around Al4C3 precipitation. 

For this purpose the diffraction line profile of {211} were 
analysied. A dyfractograms were recorded in normal 
envioremental conditions i.e. room tempereture, moisture 
70%80%. Using grazing angle X-ray diffraction geometry it was 
possible to measure surface layers with thickness of g1= 3,75 m, 
g2=7,5 µm, g3=10,5 µm, g4=14,0 µm during 0÷484 h in non-
drstructive mode. X-ray diffraction patterns were recorded evry 
24 hours. An example of microstresses distribution is presented 
on Figure 1. 
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Fig. 1. Microstresses  distribution in surface layer versus time 
of self-disintegration 

Proces of microcracking was developing in surface layer 
(thickness about 14 m), further calculations were curied out for 
the state of plane stress. 

A local maximum of normal stresses was asumed as a 
characteristic criterion of the material as the stresses causing 

cracking in surface layer. Following values were taken into 
account: 

and  

where: I – macroscopic residual stress in surface plane, 3-
principal stress. 

The macroscopic residual stress was measuredby sin2
method (eq.5), and procedure needs strain measurnament  for 
choosen crystallographic planes {100},{110},{200} and {211} 
under different  angles [19]. An example of results for thickness 
of surface layer of g=3,75 m is presented on Figure 2. 

Residual stresses distribution  in surface layer of the sample 
versus time of self-disintegration for different thickness is 
presented on Figure 3. 

Measurnaments were curied out from begining (state after 
casting) to the powder state what appeared after 484 hours. The 
irradiated area was defined by geometrical conditions and cross-
section of the incidence X-ray beam and for Bragg-Brentano 
geometry. The surface was S=4,8-11,5 mm2 and was changing 
continuously versus  angle. In the case of grazing angle X-ray 
diffraction radiated area was twice larger but for particular 
incidence angle constant. 
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Fig. 2. Basic relation for measured macroscopic residual stress of
FeAl lattice for g-sin2  method for the thickness of surface layer
3,75 m

Microscopic residual stresses II in FeAl grains around Al4C3
precipitation was calculated from Hook’s law with assumption of 
plain stress field: 

 21
1  
E

 (8) 

where: 1 , 2  - are averaged main micro-stresses. For uniform 

tensile it was assumed 1= 2 = II . Above assumption is taken 
from fact that there are two neighboring areas where tensile and 
compression appear to fulfill equilibrium conditions. Therefore 
absolute value of second order stresses can be expressed as: 
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The averaged crystal lattice microstrain can be treated as a 
measure of elastic cumulated energy in grains which can 
contribute in cracking process [20]. 

According to superposition rule total stress distributions in 
surface layers can be calculated. Superpose both i.e. solidification 
stresses and stress components due to chemical reaction of Al4C3
of self-disintegration the total stresses can be analyzed and 
presented on Figure 4. 
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Fig. 3. Macroscopic residual stresses change versus time of
self-disintegration of FeAl in surface layer for different thickness 
g, m

3. Analysis of the results 
The obtained results of calculations and measurements 

confirmed importance of residual macro and micro-stresses in 
grains of FeAl superlattice around Al4C3 precipitation. Micro-
stresses like oscillation fields from averaged macroscopic stress 
level energetically contributes in chemical reaction with 
environment and in self-disintegration process. The micro-stresses 
decrease versus time after 60 hours. After 484 hours they 
approach to zero what was found before (Fig.1.). 

Macroscopic stresses at the very beginning were compressive. 
They changed in another way for the reason of self-disintegration 
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Fig. 4. Total stress distribution versus time of self-disintegration 
of FeAl in surface layer for different thickness g, m
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carbide precipitation and in intermetallic matrix are presented in 
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by solidification process and during degradation Al4C3 carbides in 
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2. Experimental 
Macro and microscopic residual stresses  were measured with 

X-ray diffraction methods. The difractometer D8 Advance with 
cobalt tube radiation was used. The modified g-sin2 metod with 
grazing incidence angle X-ray diffraction geometry were applied 
[14-16]. This metodolgy anabled tomography like measurnaments 
in non-destructive way. This geometry of diffractin is 
characterized with small and constant incidence angle and with 
constant effective depth of penetration which is regulated with 
incidence angle of X-ray beam [16]. 

Using this non-destructive technique it was possible to repeat 
measurnaments of the same area on the sample versus time of 
chemical reaction and cracking development. A phase analysis, 
lattice parameter and lattice elastic strains can be measured with 
this diffraction [17]. 

Bragg equation and some crystallographic relations were used 
in measurement methodology of residual stresses:  

2 2 2

2hkla d h k l
sin



     (1) 

where: a- lattice parameter measured in direction defined with 
and angels, dhkl- interplanar distance between crystallographic 
planes {hkl}, - wavelength, - Bragg angle, – angle between 
normal to the sample and normal to diffracting planes {hkl}, –
angle between x axis of the sample and direction of measured 
stress component. 

An elastic strain measured in particular direction can be 
expressed with equation 

0

0

d
dd 

 
  (2) 

where: d0- interplanar distance between crystallographic planes 
{hkl} in unstressed sample (powder). 

An elastic strain  can be transformed into sample 
coordinates with relation: 

2
33

2
22

2
11 aaa    (3) 

1,2,3– main strains, a1,a2,a3– direction cosine of the angles 
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consisted in diffraction peak analysis. A physical widening of 
diffraction lines  were estimated with assumption of Gauss 
function fitting procedure [18]. 
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Fig. 1. Microstresses  distribution in surface layer versus time 
of self-disintegration 

Proces of microcracking was developing in surface layer 
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the state of plane stress. 
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Microscopic residual stresses II in FeAl grains around Al4C3
precipitation was calculated from Hook’s law with assumption of 
plain stress field: 
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where: 1 , 2  - are averaged main micro-stresses. For uniform 

tensile it was assumed 1= 2 = II . Above assumption is taken 
from fact that there are two neighboring areas where tensile and 
compression appear to fulfill equilibrium conditions. Therefore 
absolute value of second order stresses can be expressed as: 
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The averaged crystal lattice microstrain can be treated as a 
measure of elastic cumulated energy in grains which can 
contribute in cracking process [20]. 

According to superposition rule total stress distributions in 
surface layers can be calculated. Superpose both i.e. solidification 
stresses and stress components due to chemical reaction of Al4C3
of self-disintegration the total stresses can be analyzed and 
presented on Figure 4. 
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grains of FeAl superlattice around Al4C3 precipitation. Micro-
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approach to zero what was found before (Fig.1.). 
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of Al4C3 carbide. When cracking has started macroscopic stresses 
decreased and in time of cracking i.e. after 60-90 hours they 
approached to tensile (Fig. 3). The maximum of the total stresses 
indicate also that most intensive cracking took place after about 
60-110 hours. A relaxation processes i.e. decrease of stresses 
appeared in that time. 

4. Conclusions
The maximum of normal tensile stresses in FeAl grains of 

matrix was main cause of cracking. Nucleation of cracks and their 
development can be observed in microstructure. Some cracks in 
Al4C3 carbides appeared as the result of disintegration and their 
chemical reactions with moisture. 

Direction of crack development and time relations of cracking 
and stresses change indicates on critical total stresses. 

The results confirmed on algebraic add of micro and 
macroscopic residual stresses in particular directions can be 
treated as the fulfilling conditions for hypothesis of maximum 
normal stresses in self-disintegration process. 

The measured compressive macroscopic residual stresses 
resulting from solidification superimposed with microscopic 
stresses and finally in carbide-matrix interface zone tensile total 
stresses caused cracking. 
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