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Abstract
Purpose: The purpose of this paper is the mathematical description of the impact phenomenon of a bullet of the 
speed ca. 400 m/s, with the use of a degenerated model.
Design/methodology/approach: In the study, an attempt has been made to apply an untypical model for the 
piercing phenomenon analysis. Basing on the model, the theoretical analysis of the piercing phenomenon in 
quasistatic and dynamic load conditions, in the impact load form, has been carried out.
Findings: This analysis enabled derivation of significant conclusions useful in the design process of effective 
ballistic shields.
Research limitations/implications: In the study, the concept has been assumed that a dynamic model, simple 
as possible, that may be analyzed not only by numerical methods but also (at least approximately) with the 
mathematical analysis methods, may provide significant directions concerning material piercing.
Practical implications: The use of so called degenerated model allows to describe the phenomenon in more 
detail at various piercing speeds what extends the possibilities in the sphere of designing the optimum ballistic 
shields and of identification of the properties of materials applied for construction of shields.
Originality/value: The proposed method of identification of material properties in the piercing process, within 
the relation: force – deformation, is a novel one since the essence of the identification is the standard rheological 
model in an adequate plastic component describing the viscous attenuation with dry friction.
Keywords: Computational mechanics; Impact load; Impact; Composites

1. Introduction 
In the military applications for light weight ballistic shields (e.g. 

body armors, vehicle armoring), light weight composite materials 
are more and more often applied; the materials include, for instance, 
structures made of laminates and sandwich panels reinforced with 
plastic fibers. The fibers are characterized with high resistance 
characteristics for impact loads. The piercing process for the 
lightweight material structures is extremely complex. It is 
connected with the fact that the damage process consists of several 
stages. For instance, Greaves [1-2] divides destruction occurring 
during the dynamical penetration into two phases, stating that the 
first phase during which indentation and shear happens is 
predominating (the biggest part of the energy is  absorbed in this 

phase). Many other researchers [3-5] tried to determine the piercing 
process phases. Non classical methods of modeling concerning 
synthesis, analysis and researches of sensitivity various models of 
objects can be found in [6-12]. However, modeling of this process 
is done exclusively on the basis of determination of substitute 
rigidity values originating from the general elasticity theory for 
isotropic bodies. In the present study, the author proposes another 
approach wherein not only pure elastic interactions are assumed in 
the theoretical model, but also dissipative components in an 
appropriate (non parallel) configuration with the elastic 
components. Such model enables for a more accurate description of 
the piercing phenomenon in which the dependence of the 
characteristic curves “force – deformation” on the speed of the 
deformations occurring is observed often, what does not happen 
for the pure elastic liner model case.  
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2. Description of the Approach 
In the present study, the following premises have been used 

for constructing the piercing model: 
1) the dominating role is played by the material sphere directly 

adhering to the piercing material (bullet), 
2) it has been assumed that the bullet is non deformable, 
3) shield vibration after the impact are of no influence upon the 

bullet movement in the shield (the bullet movement happens 
fast with relation to the wave propagation speed in the shield),  

4) the material damage process within the impact scope has been 
divided into two stages: 
 stage I, wherein the reversible deformation (that does not 

destroy the material in a permanent way) happens,  
 stage II, wherein the irreversible deformation (permanent 

destruction of the material) happens. 
5) it has been accepted that the shield has been secured in an 

ideally elastic way to an inertia-type impact system.  
The diagram of the model accepted a priori has been 

presented in Fig. 1.  

Fig. 1. The diagram of the model assumed in the piercing 
process, where: x – a constant describing the bullet movement in 
the shield, x0 – a constant describing the shield shift, u – a variable 
describing the II stage of deformation,  – a variable describing 
the deformation stage II, c1 – a constant describing the static 
rigidity of the material of stage I, c0 – a constant describing the 
dynamic rigidity of the material of the stage I, cz  – a constant 
describing the shield fixing, k0 – attenuation of the deformation 
stage I, h – dry friction of the deformation stage II, k – attenuation 
of the deformation stage II. 

In the stage II, it has been assumed that the character of the 
acting force changes significantly after the force exceeds the 
value of h as dry friction during movement of the bullet in the 
material being pierced. The bullet movement with respect to the 
inertia-type (immovable) reference system is defined with a 
variable x(t) being the sum of the shift of the shield x0, the 
reversible deformation u of the shield and the irreversible 
deformation   describing the values of the shield damage, i.e. in 

accordance with the relation (1). 

 uxx 0  (1) 

As it can be seen, within the scope of reversible deformations, 
the standard rheologic model has been wored out. The model 
includes the Maxwell component described with the constants k0,
c0, in a parallel connection with the Hooke’s component of the 
constant c1. Let us note that at a rigid shield fixing, it may be 
assumed:  
cz = .

In addition, the model allows also a description of simpler 
material models, namely: 
 ideally elastic material (it should be assumed that c0 = 0), 
 ideally plastic material (assume: c1 = 0, c0 = ),
 elastic / plastic material (c0 = ), 
 material of a constant (independent of the deformation speed) 

plasticity limit (assume k = 0). 
All constants included in the model may be determined 

experimentally, e.g.: at static loads, at quasistatic piercing, at 
dynamic load conditions, applying adequate identification 
methods for degenerated models [13-15]. 

3. Description of Achieved Results 

3.1. Static Load 

In the case of a constant piercing force, S(t) = S0 = const, the 
movement differential equations take the form: 

00z00 Sxcxm   (2) 

0SkhSgn   for hS0    (3) 

0 for hS0   (4) 
  001 Szucuc   (5) 
 zuczk 00   (6) 

From the above equations, it follows: 

tcos
c
S

c
S)t(x 0

z

0

z

0
0  ,

m
cz

0   (7) 

const)t( 0    for hS0   (8) 

t
k

hS)t( 0
0 






 

   for hS0   (9) 

where 0  is the plastic strain at the initial instant, i.e. at the 
instant that the force S0 is applied. For the virgin system (i.e. the 
system unloaded earlier), 00  . The plastic deformation 

increases in time at a constant speed 
k

hS0  , if the force  

S0  h. On the other hand, if the force S0  h, then the plastic 
deformation is constant and equal to the initial; value 0 . On the 

basis of the study [15], for the zero initial conditions, the relation 
u(t) takes the form: 
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The situation is, however, quite different in the case of short-
term dynamic loads, wherein the momentary behavior of the 
material may be of the deciding influence upon the system 
motion. This happens in particular in the case of penetration of the 
shield by the bullet. In a case of cz =  and the piercing force 
lower that some constant h,  = 0 is obtained. Then x = u while 
the relation x(t) is described by the plot depicted in Fig. 2. 
However, for S0  h, we have: 
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where the constant  
k

hSv 0
p


  defines the permanent 

deformation speed for the material in the static load conditions. 
Thus, in the case, the total deformation x will be equal to: 
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Fig. 2. Material behavior at rigid fixing under influence of the 
piercing force S0 > h 

3.2. Quasistatic Load 

In quasistatic loads, the piercing force is usually variable in 
time. For the analysis, the constant piercing force v0 is accepted. 
A result of that test are, usually, the relations S(x). For cz = 
(rigid fixing), the movement equation will be as follows:  

0  for S  h (13) 
  Szucuc 01   (14) 
 zuczk 00   (15) 

Upon transformations and elimination of the variable ”z”, as well 
as upon maintaining the case, if S  h then 00   and then 

ux  . Assuming piercing at a constant speed v0, the final form 
S(u) in the quasistatic test will take the form: 
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The relation S(u), in its graphic form, for individual models, has 
been presented in Fig. 3. It can be easily noticed that, when the 
value v0 approaches zero (slow piercing), all relations of S(u) 
become more and more similar to the relation for the Hooke’s 
model. On the other hand, for v0 = 0, all of them are exactly equal 
to S(u) = c1u. Significant differences occur, however, at high 
piercing speeds (v0  0) what happens in cases that the shield is 
shut through by the bullet (Fig. 4). Therefore, it should be noted 
that, by applying the Hooke’s model, both for the case (a) and (b), 
an apparent increase of the material rigidity (the Young’s module 
increase) is observed together with an increase in the piercing 
speed, what, as it is known, occurs in the material investigations. 
However, it is not the Young’s module that changes, but the 
reason is in that the constant k0 is not taken into consideration in 
the constitutive interconnections.  

Fig. 3. The relation S(u) of quasistatic piercing for the models 
under consideration 

Fig. 4. A comparison of the relation S(u) for the standard model  
 in a case of the piercing speed values v0: small (a) and big (b)

3.3. Dynamic Loads 

Substituting xmS0   to the equations (2-6), the differential 
equations of the final mathematical form of the model accepted 
are obtained:  

xmxcxm 0z00   (17) 

    0hxmHxmkhSgn   (18) 
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where H is the Heaviside function.  

3.1.	�Static load

2.	�Description of the approach

3.	�Description of achieved 
results
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the deformation stage II, c1 – a constant describing the static 
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dynamic rigidity of the material of the stage I, cz  – a constant 
describing the shield fixing, k0 – attenuation of the deformation 
stage I, h – dry friction of the deformation stage II, k – attenuation 
of the deformation stage II. 
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plasticity limit (assume k = 0). 
All constants included in the model may be determined 
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The situation is, however, quite different in the case of short-
term dynamic loads, wherein the momentary behavior of the 
material may be of the deciding influence upon the system 
motion. This happens in particular in the case of penetration of the 
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piercing force S0 > h 

3.2. Quasistatic Load 

In quasistatic loads, the piercing force is usually variable in 
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been presented in Fig. 3. It can be easily noticed that, when the 
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where H is the Heaviside function.  

3.2.	Quasistatic load

3.3.	�Dynamic loads
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For the high impact speeds, the equation system has been 
solved by the computer simulation technique, making use of 
Simulink. Exemplary piercing process results for the given 
constant values of the model have been depicted in Fig. 5.  

Fig. 5. Exemplary computer simulation results for given model values  

4. Conclusions 
The piercing analysis done on the basis of the degenerated 

model enabled: 
 determination of the influence of the piercing speed on the 

force in the quasistatic tests (Fig. 4), 
 determination of the impact of the characteristics defining the 

system behavior within the scope of reversible deformations 
(parameters c0, k0, c1) on the permanent deformation (Fig. 5). 
In addition, it has been found that, when the degenerated 

model is applied, there happen some differences in the piercing 
process for various ratios m/v0, though the kinetic energy of the 
impact is the same. However, the investigation within this scope 
are in progress and the problem has not been discussed in the 
present study.  
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