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Abstract
Purpose: of this paper is to develop a simple algorithm for local and diffuse necking analysis, which covers 
different yield criteria and strain hardening laws.
Design/methodology/approach: Theoretical study, application of plasticity theory. Numerical analysis, FLD 
determination. Experimental verification (material parameters and FLD). Comparison of obtained results with 
the results available in literature. Both, stress and strain based FLD-s are considered.  
Findings: The dimensionless instability tensors are introduced. The plastic instability criterion in tensor notation 
is derived. The capabilities of the derived instability criteria are improved using different anisotropic yield 
criteria from Hill48 up to BBC2003. A test procedure for determining material properties and forming limits in 
plane strain condition for sheet metal is performed.
Research limitations/implications: The study is based on classical instability conditions. The stress-strain 
behavior of the material is described with empirical equation (the strain rate and also temperature dependence 
of the flow stress are not considered).
Practical implications: The forming limit curve determined defines boundary between elastic or stable plastic 
deformation (below curve) and unsafe flow (above curve). The risk of failure is determined by the distance 
between the actual strain condition in the forming process and the forming limit curve.
Originality/value: A simple algorithm for local and diffuse necking analysis is proposed. The dimensionless 
instability tensors introduced can be used for theoretical improvements.
Keywords: Numerical techniques; Formability; Plastic anisotropy

1. Introduction 
The traditional forming limit diagram is described by a curve 

in a plot of major strain vs. minor strain. This curve defines 
boundary between elastic or stable plastic deformation (below 
curve) and unsafe flow (above curve). The risk of failure is 
determined by the distance between the actual strain condition in 
the forming process and the forming limit curve.  

The concept of FLD was proposed by Keeler and Backofen 
[1] for the biaxial stretching process and was extended by 
Goodwin [2] to include the tension-compression states. According 
to this concept the limit strains can be calculated on the basis of 
certain plastic instability criteria. The most widely used instability 

criteria have been proposed by Swift ([3], diffuse necking), Hill 
([4], localized necking), Marciniack & Kuczynski ([5], initial 
imperfections) and Storen and Rice ([6], the corner theory) and 
Tvergaard ([7], damage model). The yield function calibration 
problems for orthotropic sheet metals are investigated in [8].  

Most commonly, the FLD analysis is performed under the 
assumption of proportional loading. However, in actual sheet 
metal manufacturing processes the forming limit is generally 
strain path dependent. During the last decade a theoretical basis 
for a strain path-independent stress based approach is provided 
(Sing and Rao [9-10], Stoughton and Zhu [11]). In [12] the stress-
based forming limit diagram (FSLD) is applied to forming limit 
prediction for the multi-step forming of auto panels. 

1.	�Introduction
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Recently, it is pointed out in [13], that the FLSD offers 
advantages over the traditional strain-based FLD in cases when 
unloading occurs between two successive loadings only.  

An alternate, crystal plasticity based approach for forming 
limit prediction is given in [14]. The experimental FLD 
construction techniques are reviewed by Avila and Vieira [15].   

In the current paper, an attempt is made to develop an algorithm 
for determing local and diffuse necking, which meets the following 
requirements: 
 different anisotropic yield criteria must be included (the critical 

strain is sensitive to the yield surface shape), 
 different strain hardening laws must be included in order to 

describe the stress-strain behavior of various materials. 
The capabilities of the algorithm proposed are improved using 

different yield criteria: Hill ([4], quadratic), Hill ([16], non-
quadratic), Hill ([17], user friendly), Logan and Hoshford [18], 
Barlat and Lian [19], BBC2003 (Banabic et al. [20]). It appears 
that the Hill’s 1993 criterion ([16]) needs detailed attention due to 
its non-homogeneity with respect to the stress components. Both, 
the strain and stress based FLD are considered. A test procedure 
for determining material properties and forming limits in plane 
strain for sheet metal is performed. 

2. Condition of continuous yielding 
Assuming orthotropic symmetry, numerous yield criteria have 

been proposed to account in plane and normal anisotropy of the 
sheet metal. In the following, the yield function is considered as 

0),,,(  ybij Rf   , (1) 

where   is the equivalent stress and y  the yield parameter, 

R  and   stand for the Lankford coefficients for the uniaxial 
yield stresses measured along the rolling, diagonal and transverse 

directions of the sheet, respectively (  000 90,45,0 ). The 
equivalent stress   is assumed to be a homogeneous function of 
degree 1 with respect to the stress components. The Lankford 
coefficients are defined as width to thickness strain increment 
ratios thicknesswidth /R   . The yield stress in equi-biaxial 

tension is denoted by b .
However, the condition in form (1) describes the initiation of 

yielding, only. Equalizing the yield stress y  in (1) with the 
flow stress of the material one obtains the condition for 
continuous yielding as 

),(),,,( iPSHbij mR     (2) 

In (2) P  and im  stand for the the equivalent plastic strain rate 
and the material parameters, respectively.  

3. Instability conditions 
For analysis of the negative minor strain regime of FLD Hill’s 

localized necking condition is employed. According to Hill’s 

instability condition the localized necking (through thickness 
neck) occurs when the rate of strain hardening is equal to the rate 
of geometric softening. The localized neck is expected along the 
line of zero extension and the constraints are following 

)( 2111   ,      12   . (3) 

In (3)   stands for strain ratio ( 12 /  ).
The second condition in (3) states that the stress ratio remains fixed 
through the formation of the neck. In order to express the condition 
(3) in compact form let us introduce the Hill’s instability tensor as 














11
)(Hill

ijA  (4) 

In notation (4) the Hill’s localized necking condition reads 

j
Hill
iji A  1 . (5) 

Similarly, the Swift diffuse necking condition can be presented in 
tensor notation as 
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Obviously, the instability conditions (5) and (6) are covered by the 
following more abstract condition 

j
yInstabilit

iji A  1 , (7) 

where yInstabilit
ijA  is taken equal with Hill

ijA  and Swift
ijA  in the 

case of 0/ 12  dd  and 012  d/d , respectively. 
The instability conditions in tensor notation (5-7) simplify 
numerical implementation of the FLD. 

4. Plastic instability criterion 
Let us proceed from the condition of continuous yielding (2), 

instability condition (7) and assume that: 
 the plasticity model is rate-independent and satisfies the so-called 

consistency condition  0f ,
 the equivalent stress in (2) is a homogeneous function of degree 1 

with respect to the stress components. 
By appying classical plasticity theory the instability criterion is 
derived in terms of the stress ratio 12 /  , the equivalent 
plastic strain, the plastic anisotropy and hardening parameters as 
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where the function   is given by ratio 1 / .

5. Strain based forming limit 
The strain based FLD is defined by a plot of pairs 

( itit lim
2

lim
1 , ). In general the equivalent limit strain itlim  can 

be obtained by solving the instability criterion (8) with respect to 
the equivalent plastic strain. The expression of the equivalent 
limit strain corresponding Voce hardening law (sample) reads 
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Assuming proportional loading, the limit strains 
corresponding to the instability condition (7) can be determined 
from the associated flow rule as 
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6. Stress based forming limit 
One of the disadvantages of the conventional strain based FLD-s 

is the strain path dependence. Using the instability criterion (8), a 
simple approach for determining the stress based FLD can be given. 
Inserting the equivalent limit strain given with (9) in the strain 
hardening law yields (Voce law is employed as an example) 
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The limit stresses itlim
1  and itlim

2  can be determined in terms 

of equivalent limit stress itlim  as  
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7. Experimental procedure 
In the current study, the stainless steel AISI 304 sheet with 1 

mm thickness is considered. The constitutive relations are defined 
on the basis of experimental results. The total length of the 
specimen was 150mm, the reduced section with gage length 
100mm and width 12.5mm. The yield stresses 0 , 45 , 90  and 

the Lankford coefficients 0R , 45R , 90R  are determined from 

uniaxial tensile test of a specimen cut out at 00 , 045  and 090
with the rolling direction. The strain hardening parameters are 
obtained from the tensile test of a specimen cut out at angle   with 
the rolling direction. The measured data are used for modeling 
empirical flow curves. The FLD is constructed by measuring major 
and minor strains just outside necks and fractures. The limit strains 
were determined from a circular grid path with a circle diameter of 3 
mm. Due to limitations of the equipment, an in plane formability 
analysis was performed. The specimens with total length of 100 mm 
cut out at angle    with the rolling direction were evaluated. The 

width of the free section was varied from 12.5 to 50 mm. The free 
section length was varied from 30 to 50 mm. In order to achieve the 
exact plane strain conditions the specimen with maximal width and 
minimal length of the free section should be considered.  

8. Numerical results 
The strain and stress based FLD for stainless steel AISI 304 is 

depicted in Figures 1 and 2, respectively.  
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Fig. 1. Strain-based FLD of stainless steel AISI 304 
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Fig. 2. Stress-based FLD of stainless steel AISI 304 

In Figures 1-2 the Swift and Hill instability conditions are 
combined with the Hollomon and Voce strain-hardening rules.The 
forming limit curve corresponding to a recent plane stress yield 
criterion BBC2003 [20] is given in Figure 3. It can be seen from 
Figures 1-3 that the shape and position of the forming limit curves 
are sensitive to the yield criteria used. The forming limit curves 
corresponding BBC2003 and Barlat-Lian 1989 yield criteria are 
close to each other (Figure 3).  

2.	�Condition of continuous 
yielding

4.	�Plastic instability criterion

3.	�Instability conditions 5.	�Strain based forming limit
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Recently, it is pointed out in [13], that the FLSD offers 
advantages over the traditional strain-based FLD in cases when 
unloading occurs between two successive loadings only.  

An alternate, crystal plasticity based approach for forming 
limit prediction is given in [14]. The experimental FLD 
construction techniques are reviewed by Avila and Vieira [15].   

In the current paper, an attempt is made to develop an algorithm 
for determing local and diffuse necking, which meets the following 
requirements: 
 different anisotropic yield criteria must be included (the critical 

strain is sensitive to the yield surface shape), 
 different strain hardening laws must be included in order to 

describe the stress-strain behavior of various materials. 
The capabilities of the algorithm proposed are improved using 

different yield criteria: Hill ([4], quadratic), Hill ([16], non-
quadratic), Hill ([17], user friendly), Logan and Hoshford [18], 
Barlat and Lian [19], BBC2003 (Banabic et al. [20]). It appears 
that the Hill’s 1993 criterion ([16]) needs detailed attention due to 
its non-homogeneity with respect to the stress components. Both, 
the strain and stress based FLD are considered. A test procedure 
for determining material properties and forming limits in plane 
strain for sheet metal is performed. 

2. Condition of continuous yielding 
Assuming orthotropic symmetry, numerous yield criteria have 

been proposed to account in plane and normal anisotropy of the 
sheet metal. In the following, the yield function is considered as 

0),,,(  ybij Rf   , (1) 

where   is the equivalent stress and y  the yield parameter, 

R  and   stand for the Lankford coefficients for the uniaxial 
yield stresses measured along the rolling, diagonal and transverse 

directions of the sheet, respectively (  000 90,45,0 ). The 
equivalent stress   is assumed to be a homogeneous function of 
degree 1 with respect to the stress components. The Lankford 
coefficients are defined as width to thickness strain increment 
ratios thicknesswidth /R   . The yield stress in equi-biaxial 

tension is denoted by b .
However, the condition in form (1) describes the initiation of 

yielding, only. Equalizing the yield stress y  in (1) with the 
flow stress of the material one obtains the condition for 
continuous yielding as 

),(),,,( iPSHbij mR     (2) 

In (2) P  and im  stand for the the equivalent plastic strain rate 
and the material parameters, respectively.  

3. Instability conditions 
For analysis of the negative minor strain regime of FLD Hill’s 

localized necking condition is employed. According to Hill’s 

instability condition the localized necking (through thickness 
neck) occurs when the rate of strain hardening is equal to the rate 
of geometric softening. The localized neck is expected along the 
line of zero extension and the constraints are following 
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In (3)   stands for strain ratio ( 12 /  ).
The second condition in (3) states that the stress ratio remains fixed 
through the formation of the neck. In order to express the condition 
(3) in compact form let us introduce the Hill’s instability tensor as 
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In notation (4) the Hill’s localized necking condition reads 

j
Hill
iji A  1 . (5) 

Similarly, the Swift diffuse necking condition can be presented in 
tensor notation as 
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Obviously, the instability conditions (5) and (6) are covered by the 
following more abstract condition 
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where yInstabilit
ijA  is taken equal with Hill

ijA  and Swift
ijA  in the 

case of 0/ 12  dd  and 012  d/d , respectively. 
The instability conditions in tensor notation (5-7) simplify 
numerical implementation of the FLD. 

4. Plastic instability criterion 
Let us proceed from the condition of continuous yielding (2), 

instability condition (7) and assume that: 
 the plasticity model is rate-independent and satisfies the so-called 

consistency condition  0f ,
 the equivalent stress in (2) is a homogeneous function of degree 1 

with respect to the stress components. 
By appying classical plasticity theory the instability criterion is 
derived in terms of the stress ratio 12 /  , the equivalent 
plastic strain, the plastic anisotropy and hardening parameters as 
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where the function   is given by ratio 1 / .

5. Strain based forming limit 
The strain based FLD is defined by a plot of pairs 
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be obtained by solving the instability criterion (8) with respect to 
the equivalent plastic strain. The expression of the equivalent 
limit strain corresponding Voce hardening law (sample) reads 
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Assuming proportional loading, the limit strains 
corresponding to the instability condition (7) can be determined 
from the associated flow rule as 
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6. Stress based forming limit 
One of the disadvantages of the conventional strain based FLD-s 

is the strain path dependence. Using the instability criterion (8), a 
simple approach for determining the stress based FLD can be given. 
Inserting the equivalent limit strain given with (9) in the strain 
hardening law yields (Voce law is employed as an example) 
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The limit stresses itlim
1  and itlim

2  can be determined in terms 

of equivalent limit stress itlim  as  
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7. Experimental procedure 
In the current study, the stainless steel AISI 304 sheet with 1 

mm thickness is considered. The constitutive relations are defined 
on the basis of experimental results. The total length of the 
specimen was 150mm, the reduced section with gage length 
100mm and width 12.5mm. The yield stresses 0 , 45 , 90  and 

the Lankford coefficients 0R , 45R , 90R  are determined from 

uniaxial tensile test of a specimen cut out at 00 , 045  and 090
with the rolling direction. The strain hardening parameters are 
obtained from the tensile test of a specimen cut out at angle   with 
the rolling direction. The measured data are used for modeling 
empirical flow curves. The FLD is constructed by measuring major 
and minor strains just outside necks and fractures. The limit strains 
were determined from a circular grid path with a circle diameter of 3 
mm. Due to limitations of the equipment, an in plane formability 
analysis was performed. The specimens with total length of 100 mm 
cut out at angle    with the rolling direction were evaluated. The 

width of the free section was varied from 12.5 to 50 mm. The free 
section length was varied from 30 to 50 mm. In order to achieve the 
exact plane strain conditions the specimen with maximal width and 
minimal length of the free section should be considered.  

8. Numerical results 
The strain and stress based FLD for stainless steel AISI 304 is 

depicted in Figures 1 and 2, respectively.  
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Fig. 1. Strain-based FLD of stainless steel AISI 304 
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Fig. 2. Stress-based FLD of stainless steel AISI 304 

In Figures 1-2 the Swift and Hill instability conditions are 
combined with the Hollomon and Voce strain-hardening rules.The 
forming limit curve corresponding to a recent plane stress yield 
criterion BBC2003 [20] is given in Figure 3. It can be seen from 
Figures 1-3 that the shape and position of the forming limit curves 
are sensitive to the yield criteria used. The forming limit curves 
corresponding BBC2003 and Barlat-Lian 1989 yield criteria are 
close to each other (Figure 3).  

6.	�Stress based forming limit

7.	�Experimental procedure

8.	�Numerical results
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The material parameters are determined experimentally for 
the stainless steel AISI 304, but for the 6000 series aluminum 
alloy sheet are found in literature [20].  

9. Conclusions 
The instability criterion (8) has been derived by use of 

classical plasticity theory. Some new features can be outlined as:   
 the dimensionless instability tensors are introduced,  
 the non-homogeneous yield functions are covered, the non-

homogeneity can be incorporated in function   as 
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As result no separate treatment is needed for each yield 
condition and strain hardening law. A number of yield criteria are 
examined: Banabic et al. [20], Barlat and Lian [19], Logan and 
Hoshford [18], (Hill [4, 16, 17]). The instability criterion was 
derived for homogeneous yield functions and was completed 
latter in order to cover Hill’s 1993 criterion. A simple algorithm 
for determining FLD is based on use of classical instability 
conditions and abstraction. The cost of the simplicity is that lower 
accuracy can be achieved in comparison with the FLD obtained 
by use of more sophisticated instability conditions. 
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