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Abstract
Purpose: The typical mathematical descriptions of pure metal solidification (micro/macro approach) base on 
the linear or exponential (Kolmogoroff) models. In the paper the possibilities of such models modification are 
presented. This new model can be called a power type one. The approach proposed can be useful on the stage 
of numerical simulation of solidification on the micro/macro scale.
Design/methodology/approach: The local and temporary volumetric fraction of solid state is described by 
the equation from which both the linear and exponential model can be obtained. Introducing the additional 
parameter to this equation the new solidification model is found.
Findings: The method here presented allows to determine the transient temperature field in a non-homogeneous 
system casting-mould and to observe the course of metal solidification. The obtained cooling curves allow to 
observe (contrary to macro models) the recalescence effect.
Practical implications: The solidification model in a version presented in this paper can be an effective tool for 
numerical simulation of solidification process.
Originality/value: The concept of introduction of power-type function for the mathematical description of 
micro/macro solidification model is original and gives the new possibilities numerical methods application in a 
thermal theory of foundry processes.
Keywords: Numerical techniques; Solidification of metals; Micro/macro models

1. Introduction 

The heat transfer processes proceeding in the solidifying casting 
volume (only heat conduction is taken into account) are described 
by the following energy equation [1-4, 15] 

       ,
, ( , )V

T x t
c T T T x t q x t

t



     

 (1) 

where  c T
 is a volumetric specific heat,  T

 is a thermal 

conductivity, Vq
 is a source function controlling the 

solidification process, T, x, t denote the temperature, spatial co-
ordinates and time. The last component in equation (1) equals 

( , )( , )= S
V

f x tq x t L
T


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 (2) 

where L is a volumetric latent heat, Sf  is a volumetric solid state 
fraction at the point considered. 

On the outer surface of the system the condition in general 
form 

( , )( , ), 0T x tT x t
n

 
   

 (3) 

is given, where n   denotes a normal derivative. 
The initial condition 
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00 : ( , 0)t T x T   (4) 

is also known. 
More complex and close to the real situation mathematical 

models take into account the presence of the mould sub-domain. 
Then the equation (1) is supplemented by the equation 

       ,
,M

M M M

T x t
c T T T x t

t
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 (5) 

where Mc  is a mould volumetric specific heat, M  is a mould 
thermal conductivity. In the case of typical sand molds on the 
contact surface between casting and mould the continuity 
condition in the form 

( , ) ( , )

( , ) ( , )

M
M

M

T x t T x t
n n

T x t T x t
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 (6) 

can be accepted. Additionally on the external surface of the mould 
we have 

 ( , ) ( , )M
M M a

T x t T x t T
n

 
  


 (7) 

where   is a heat transfer coefficient, aT  is an ambient 
temperature. The initial mould temperature is also given. From 
the numerical point of view the algorithm in which the thermal 
processes in the mould sub-domain are taken into account is more 
time-consuming, but similar to the simpler one. 

The micro/macro models of solidification (the second 
generation ones) basing on the assumption that the kinetic of 
nucleation and nuclei growth are proportional to the undercooling 
below the solidification point are discussed. In particular, the 
linear model described among others in [5,6,7], the exponential 
one [8-11] and its modification [8,12-15] are considered. The aim 
of our research is to modify the mentioned above approaches and 
to introduce the power-type function model. 

2. Micro/macro models of solidification 

In the group of models here discussed we introduce the 
following function 

 , ( , ) ( , )x t N x t V x t   (8) 

where N is a grains density [grains/m3 ], V is a single grain 
volume. If we consider the spherical grains and u R t    is a 
crystallization rate (R is a grain radius) then 
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0

4, d
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t
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In the case of the others types of crystallization (e.g. dendritic 
growth) the coefficient 1  can be introduced [12] and then 
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Finally 
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The numerical aspects of this function computations are 
discussed, among others, in [6, 7]. 

In the case of so-called linear model the function Sf  is 
assumed to be equal ( , )x t :

 ( , ) ,Sf x t x t  (12) 

and if 1Sf  then the crystallization process stops. The derivative 
of Sf  with respect to time equals 

 ,( , )S x tf x t
t t




 
 (13) 

One can see that equation (11) determines the geometrical 
volume (volume fraction) and it is the correct assumption on the 
first stages of crystallization. In order to take into account the 
geometrical limitations of growth in the final stages of the process 
the equation (13) can be modified to the form [5] 

   ,( , ) 1 ( , )S
S

x tf x t f x t
t t


 

 
 (14) 

It can be shown that the exponential model resulting from the 
theory proposed by Mehl, Johnson, Avrami and Kolmogoroff can 
be also found directly using the last equation. So, we transform 
the equation (14) to the following form 
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and next 

( ) 1 exp ( )Sf C     (16) 

Because for 0 : 0Sf   therefore 1C    and finally 

( ) 1 exp ( )Sf      (17) 

The equation (17) corresponds to the well known 
Kolmogoroff formula. One can see that for the small geometrical 
volumes exp ( ) 1     and the equations (12), (17) lead to the 
same results. 

The formula (14) can be modified to the other form, namely 
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where 0n  . From the physical point of view the same 
conditions as in case of (14) are fulfilled and the component 
1 Sf  changes from 0 to 1, while the generalized form of (15) is 
then the following 
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The solution fulfilling the condition 0 : 0Sf    is of the 
form 

 
1

1( ) 1 ( 1) 1 n
Sf n       (20) 

One can see that the last power-type formula constitutes the 
generalization of linear and exponential models. For 0n   one 
obtains the equation (12), while for 1n   one has 
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which correspond to (17). The others values of n can be also be 
taken into account. For example 
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It should be pointed out that if 1n   then for 
: 1Sf   . This property is not fulfilled for 1n   and it 

must be taken into account on the stage of numerical simulation. 
For example if 1 2n   then solidification process takes place 
only for 2  , the values 2   are not physically correct. 

Additionally considering the group of models discussed it is 
assumed that a local and temporary number of nuclei is 
proportional to the second power of undercooling below the 
solidification point *T

  22 *( , ) , ( , )N x t T x t T T x t         (23) 

where   is the nucleation coefficient. The nucleations stops when  

( , ) ( , )T x t t T x t     , for *( , ) ( , ) 0T x t T N x t  .

The nuclei growth is determined by the formula 

 d ( , ) ,
d

mR x t T x t
t

   (24) 

where   is the growth coefficient,  1, 2m  (see: [12,14]). One 
can find also the other equation, namely 

   2 3
1 2
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where 1 , 2  are the growth coefficients. 
The details concerning the numerical aspects of solidification 

process modelling will be not here discussed. The information 
from this scope can be found, among others in [2, 3, 8]. 

3. Example of computations 
The aluminium plate ( 2 0.01G  m) produced in typical sand 

mould has been considered. The input data concerning the 
materials can be found in [1]. The method of source function 
modelling is discussed in [3]. 

In Figure 1 the cooling curves at the point located close to the 
casting-mould contact surface are shown. They correspond to 
parameters 1n   (Kolmogoroff model) and 2n   (power-type 
model). The differences between the results obtained are not big, 
but visible. The authors are not able to answer which ones are 
better. It requires the exact verification with the experiments. In 
spite of this, it should be pointed out that both results correspond 
to the real courses of typical cooling curves and the power-type 
model most certainly constitutes an effective generalization of the 
models described in literature. 

Fig. 1. Cooling curves 
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where   is a heat transfer coefficient, aT  is an ambient 
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the numerical point of view the algorithm in which the thermal 
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Fig. 2. Functions  Sf 

In Figure 2 the functions  Sf  for different values of   are 
shown. One can see that in the case of big nuclei density (close-
grained structure) the value of n is fractional, while in the case of 
small nuclei density (coarse-grained structure) the value of n 
should be assumed more than 1. The possibility of local values of 
n introduction can be also taken into account. 

Conclusions  
The generalization of well known Mehl-Johnson-Avrami-

Kolmogoroff approach gives the possibilities of new solidification 
models construction . They models can be useful on the stage of 
numerical simulation of thermal processes proceeding in the casting-
mould system.  
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