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Materials

AbstrAct
Purpose: Purpose of this paper is to optimize the design of the manufacturing technology process of large 
composite plastic products. One of the key problems is how to integrate computer-based product design and 
planning of the technology process.
Design/methodology/approach: In the current study the Neural Network meta-modelling technique has been 
used. The optimization of the plastic sheet and its strengthening layer thickness has been performed using the 
surrogate design model. For modeling and structural analysis of derivative products CAE (ANSYS) and CAD 
(Unigraphics) systems are used. The Finite Element Analysis simulation was performed with optimal thickness 
values to verify the prediction accuracy of a surrogate model.
Findings: The optimization model is proposed to control and analyze the calculated technology planning 
route, the optimal vacuum forming processes, the technology of post-forming operations, strengthening and 
assembling operations. The design of the new products is tightly integrated with manufacturing aspects. The 
product family of the large composite plastic products together with the derivate products and their production 
technologies is designed using proposed methodology. The optimization of the plastic sheet and its strengthening 
layer thickness has been performed.
Practical implications: The most of the methods described in this study are now under development and 
industrial testing. Development of manufacturing (operation) plans for a product family is of great practical 
importance with many significant cost implications. In design of derivative products for the product family, the 
nonlinear optimization is used and the detailed description of the product is established. The proposed approach 
is exemplified by the development of a family of products in Wellspa Inc.
Originality/value: Value of this paper is that developed optimization model controls and analyzes the calculated 
technology planning route.
Keywords: Composites; Plastic forming; Manufacturing technology management; Artificial neural networks

1. Introduction 

Nowadays, advanced CAD/CAE/CAM tools are becoming 
increasingly used in companies. The computer-based methods are 
used to support engineering decision making processes. The 
computer simulations of product and process performance are 
carried out. Any undesirable conditions are modified, and the 
simulation is performed again. The simulations enable to optimize 
the product and manufacturing processes. 

Progress in design search and optimization (DSO) has 
continued steadily in past forty years, and by now, a formidable 
range of optimization methods is available to the engineers. In 
general, design optimization may be defined as the search for a set 

of inputs that minimizes (or maximizes) objective function under 
given constraints. It is subject to constraints in accordance with 
given relationships among variables and parameters and 
constraints of manufacturing system parameters and resources. 
These functions may be represented by simple expressions, 
complex computer simulations, or large-scale experimental 
facilities. Challenges to design multiple products simultaneously, 
have led to the collaborative multidisciplinary design optimization 
(MDO) [1, 2, 3, 4]. 

The aim of the current study is to develop general principles 
applicable to design of products and their manufacturing 
processes, to use the multidisciplinary design optimization 
approach enabling rapid and effective design decisions. The 
underlying focus of proposed methodology is to develop formal 
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procedures for exploiting the synergistic effects of the coupling of 
different product development and technology planning decisions 
and existing experience into the design process. 

The simulations or observations of learning methods must be 
applied for evaluation of the relationship (Response Surface 
Model-RSM) between design results and parameters with the best 
precision and the least cost. For practical design problems the 
hybrid learning methods integrating both, classification (or pattern 
recognition) and regression (or function approximation) 
paradigms, are recommended to develop and use [2]. Neural 
networks and other methods of inductive learning are possible 
tools for extensions and generalizations of classical regression 
methods for this case. For modeling the decisions of technology 
planning processes the use an artificial feed-forward neural 
networks and Radial Basis Function Network are proposed [5, 6].  

2. Product design
It is recommended to split the product design process into two 

layers: a product family planning layer, and the layer for 
optimization of the design parameters of derivative products. 

The objective of the product family planning is to optimize 
the sales volumes and module combination pattern [7]. For 
optimal planning of the volumes of product family and module 
combination, the model was developed. The model maximizes net 
profits and is subject to upper and lower bounds of market 
demand and capacity constraints. Using the optimization model, 
new additional functions of the market needs; required 
investments; possible market growth; and production costs for 
each product are determined [7]. Based on obtained results, the 
company Wellspa Inc. developed two additional functions and the 
present sales justify the made decisions. 

In product family modeling phase, general guidelines for 
product structural calculations and optimization are defined [7]. 
In design of derivative products for the product family, the 
nonlinear optimization is used and the detailed description of the 
product is established. For modeling and structural analysis of 
derivative products CAE (ANSYS) and CAD (Unigraphics) 
systems are used. It is important to emphasize that the design of 
new product is tightly integrated with technological aspects. For 
example, the bathtub is produced in two stages – in the first stage 
the shell is produced by vacuum forming, and in the second stage 
the shell is strengthened by adding glass-fiber-epoxy layer. In the 
vacuum forming process, the final shell thickness in different 
areas may differ, so this has to be taken into account in structural 
analysis of the product [8, 9].  

Fig. 1. The equivalent stress plot after optimization of the 
composite structure 

When considering optimal thickness of the strengthening layer, 
obviously it should be different in different areas. In the current 
study 12 areas of bathtub were considered. Fig. 1 shows the 
equivalent stress plot for the loaded model, which indicates the 
stress concentrators and is used to optimize the glass-fiber 
reinforcement thickness in the given areas [10, 11]. In the current 
study, for design exploration and for the surrogate design model, the 
Neural Network meta-modeling technique was used. 

3. Technology planning 
Development of manufacturing (operation) plans for a 

product family is of great practical importance with many 
significant cost implications. The planning encompasses 
development of feasible manufacturing plans, evaluation of 
different feasible solutions and selection of the optimal plan(s).  

For finding out optimal technology route we have to cut down 
the structure of the technology process into different process 
segments, meaning that we have to solve different sub systems, 
like finding out the optimal vacuum forming technology, the 
technology for post-forming operations (trimming, drilling the 
slots and cut-outs into the part, decoration, printing etc), 
strengthening (reinforcing) and assembly. An example of a 
generalized structure of the manufacturing plan for a product 
family is represented in Fig. 2 [12]. 

In Fig. 2 Op1,1 represents reverse draw forming with two 
heaters; Op1,2 represents straight vacuum forming; Op2,1 
represents automatic trimming with saws; Op2,2 represents 
automatic trimming with 5-axis NC routers; Op2,3 represents 
manual trimming with saws; Op3,1 represents manual 
reinforcement; Op3,2 represents automatic reinforcement; Op4,1 
represents sub-assembling; Op5,1 represents assembling. 

Fig. 2. The structure of the technology process 

Artificial Neural Network is used for modeling the decisions 
of technology planning processes for each operation. ANN copes 
well with incomplete data and imprecise inputs. A non-linear 
input-output mapping is accepted for modeling. Neural Networks 
are composed of nodes (neurons) connected by directed links. 
Each link has a numeric weight Wji associated with it. A 
mathematical model for a neuron could be represented as: 

),(
0

, j

n

j
iji aWga 



   (1) 

 Where: aj is the output activation of the unit j; g is the  
activation  function  of the  unit  (the sigmoid  and linear functions 
are used as  activation functions). 
  The “classical” measure of the network performance (error) is 
the sum of squared errors. Different ANN training algorithms 
were investigated: a multilayer feed forward networks with one 
hidden layer, the Sigmoid (for hidden layer) and linear activation 

functions (for output layer). Back-propagation and the Levenberg-
Marquart approximation algorithms were selected as more 
suitable. The use of the artificial feed-forward neural networks 
and Radial Basis Function Network is proposed [5, 6, 13]. The 
attempt is made to tackle the problem in a practical and 
integrative way.  

The first process in the technology route is vacuum forming. 
Vacuum forming (thermoforming) uses heat, vacuum, or pressure 
to form plastic sheet material into a shape that is determined by a 
mould [14, 15]. 

In the vacuum forming process, the knowledge and the 
experience of engineers (process personnel) is of great 
importance. Geometrical complexity, depth of draw, level of 
surface detail required, ribbing, fillets, stress concentration, 
shrinkage, expansion, and undercuts are all factors that must be 
carefully considered when creating component design and design 
of the vacuum forming operation.  

The quality of formed parts is seriously affected by the 
moisture absorbing ability of the material. The materials known 
as hygroscopic, if not pre-dried prior to forming, could have 
moisture blisters which will pit the surface of the sheet [14, 16].  

Successful design of the thermoforming operation can best be 
accomplished by controlling the critical parameters associated 
with the process. These parameters include: sheet properties, 
heating conditions, and parameters of the forming operations.  

For vacuum forming, it is necessary to accept the significant 
thinning in the sheet material accompanying the process [15]. The 
thickness variations are potentially large for a part (Fig 3). 
Therefore, it is often important to control the thickness variations 
in order to meet functional requirements of the part. 

Fig. 3. Wall thickness reduction in a 3.2 mm thick FF0013 
Plexiglas

The methods used to control thinning are: Selection of 
forming scheme; Use of surface lubrications; Modification of the 
die or part design to minimize local stress concentrations; Post-
forming strengthening (reinforcing), etc. 

For analyzing the suitable vacuum forming process, the 
heating zone variations should be also calculated. The 
temperature and working time for each heating zone depends on 
the part, material structure, geometry and parameters [17, 18]. For 
experimental analysis the product with four independent zones 
and with controlled temperature was used, the temperature 

variation was 290-340C. For better understanding in Fig. 4 is 
brought out temperature variations depending on different zones. 
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Fig. 4. Temperature differences in heating zones 

To solve the different sub systems the selection parameters 
for each technology have to be determined. Table 1 shows short 
list of the parameters for vacuum forming processes. Those 
parameters were used also in the ANN training. 

Using the selection parameters (Table 1), the ANN trained for 
each technology (like vacuum forming processes, acrylic cutting 
technologies and reinforcement) was used. For illustrating of the 
point the Table 2 is presented. There are three variations: {0 - Not 
usable, 1- Reverse draw forming with two heaters, 2- Straight 
vacuum forming }. 

Where: Geom is the geometric complexity; Log(nP) is the 
number of parts; Dim is the dimension of vacuum forming bench 
table; Thick is maximal material thickness; SQ is surface quality; 
PT is part texture; UC is undercuts; I is investments. 

Thermoformed parts are trimmed in several ways: with 
matched shearing dies, steel rule cutting dies, saws, routers, hand 
knives, and 3- and 5-axis NC routers. The trimming tasks has two 
different possibilities {yes = 1, no = 0}, if the trimming output is 
1, manual or automatic trimming can be used. In case of 
automatic trimming process saws or 5-axis NC routers can be 
used. For finding out the optimal trimming method, different 
processes have to be analyzed and possible defects determined. 
The analysis resulted in optimal input parameters for the neural 
networks tasks.  

Reinforcement tasks have two choices: {yes, no}; in case of "yes" 
the manual or automatic reinforcement can be used. In order to obtain 
sufficient training data for the neural networks used for optimization 
tasks later, the series of finite element analysis, to simulate and 
optimize the reinforcement ply thickness, were performed. 

The following formulation of the task can be given: 
Find the feasible operation sequences for a product family that 

gives us: maximum profit and minimize the manufacturing time; 
and is subject to the following constraints: capacity constraints for 
all workstations; use of materials; use of technologies. 

Table 1. 
Selection parameters for vacuum forming processes 

Parameter and mark Description 
Dimensions (L and B):  L x B;  280x430, 680 x 760 mm up to 2000 x 1000 mm 
 … … 
Draft angle (α):  α; α >5 
 … …  
Heating zones (Z): Z; 1 < Z < 4 

2.		Product	design

3.		technology	planning
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To solve the different sub systems the selection parameters 
for each technology have to be determined. Table 1 shows short 
list of the parameters for vacuum forming processes. Those 
parameters were used also in the ANN training. 

Using the selection parameters (Table 1), the ANN trained for 
each technology (like vacuum forming processes, acrylic cutting 
technologies and reinforcement) was used. For illustrating of the 
point the Table 2 is presented. There are three variations: {0 - Not 
usable, 1- Reverse draw forming with two heaters, 2- Straight 
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Where: Geom is the geometric complexity; Log(nP) is the 
number of parts; Dim is the dimension of vacuum forming bench 
table; Thick is maximal material thickness; SQ is surface quality; 
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Thermoformed parts are trimmed in several ways: with 
matched shearing dies, steel rule cutting dies, saws, routers, hand 
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different possibilities {yes = 1, no = 0}, if the trimming output is 
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the manual or automatic reinforcement can be used. In order to obtain 
sufficient training data for the neural networks used for optimization 
tasks later, the series of finite element analysis, to simulate and 
optimize the reinforcement ply thickness, were performed. 

The following formulation of the task can be given: 
Find the feasible operation sequences for a product family that 

gives us: maximum profit and minimize the manufacturing time; 
and is subject to the following constraints: capacity constraints for 
all workstations; use of materials; use of technologies. 
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Selection parameters for vacuum forming processes 

Parameter and mark Description 
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Table 2.  
Vacuum forming training mode 

The results of the technology planning optimization task, 
represent the list of operations used to manufacture the proposed 
family together with the data of the used resources.  
Applying above mentioned methodology, it is possible to find out 
the optimal set of technologies, maximizing the profits, 
minimizing the production time and costs.

4. Conclusions 
The objective of the current study is to investigate how to 

optimize the large composite plastic parts manufacturing 
processes. The computer-based product design has been 
integrated with the process planning. For optimal selection of 
technology, the corresponding optimization model has been 
proposed. The optimization model has been created to control and 
analyze the calculated technology planning route, the optimal 
vacuum forming process, post-forming operations, strengthening 
(reinforcing) and assembling operations. 

The design of the new products is tightly integrated with 
manufacturing aspects. In the current study, for design 
exploration, the Neural Network meta-modelling technique has 
been used. The optimization of the plastic sheet and its 
strengthening layer thickness has been performed using the 
surrogate design model. The final FEA simulation was performed 
with optimal thickness values to verify the prediction accuracy of 
a surrogate model. In this manner the optimization time was 
shortened considerably. 

The most of the above described methods are now under 
development and industrial testing. To facilitate these 
developments, it is important to provide effective techniques and 
computer tools to integrate an increasing number of disciplines 
into design system in which the human ingenuity combines with 
the power of computers in making design decisions. 

The proposed approach is exemplified by the development of 
a family of products in Wellspa Inc. The demonstrated examples 
ascertain the validity and effectiveness of the proposed method. 
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