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Properties

Abstract

Purpose: Until recently, keyboard has been used as the primary input method for machinery operation system. 
But in recent years, numerous methods related to direct input interface have been developed. One of them is to 
measure the surface electric potential that generates on the skin surface during muscle contraction. Based on 
this fact, hand finger operation can also be recognized with the help of the surface muscle electric potential. 
The purpose of this study is to identify the hand finger operation using surface electromyogram (SEMG) during 
crookedness state of the finger.
Design/methodology/approach: Two electrodes (Ag-AgCl electrode) were sticked randomly on the forearm 
muscles and the intensity of EMG signals at different muscles were measured for each crooked finger. Then depending 
on the intensity of the obtained electric potentials, a position was located and considered to have participated most 
actively during the crookedness state of that finger. Thus five locations on the forearm muscles were identified for 
five different fingers. Moreover, four different types of crookedness states were considered for each finger.
Findings: In this experimental study, the electric current that generates on the skin during muscle activity was 
measured for different hand finger operations. As a result, it is found that there is a specified position related to 
the maximum intensity of EMG signals for each finger. 
Practical implications: This paper cleared that the amount of crookedness of each finger can also be recognized 
with the help of surface EMG. It could be used as a machine interface technology in the field of welfare 
equipments, robot hand operation, virtual reality, etc.
Originality/value: The objective of this research project was to develop the method of recognizing the hand 
finger operation and their crookedness states from surface electromyogram (SEMG).
Keywords: Non-destructive testing; Biomaterials; EMG signal; Finger flexure movement; Muscle activity

1. Introduction 

Until recently, keyboard has been used as the primary input 
method for machinery operation system. But in recent years, 
numerous methods related to direct input interface have been 
developed. One of them is to measure the surface electric current 

on the skin overlying the muscle [1-7]. When muscles are active, 
they produce an electric current that is usually proportional to the 
level of muscle activity [8-14]. Based on this fact, it is considered 
that hand finger operation can also be recognized with the help of 
the surface muscle electric current. This report mainly explains 
the method of recognizing the hand finger operation and their 
crookedness states from surface electromyogram (SEMG). It is 
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expected that this study will be in use as a new machine interface 
technology in the field of welfare equipments, robot hand 
operation, virtual reality, etc [15]. 

2. Surface EMG
With the free movement of the hand, either the thumb faces 

the other fingers, or all the fingers move independently. Thus, the 
muscles that operate the fingers have complicated structure. The 
muscles operating the joints of different fingers are normally 
generated from the arm or hand. Three kinds of muscles that 
generated from the arm participate in flexure of fingers. They are 
flexure digitorum superficialis muscle, flexure digitorum 
profundus muscle and flexure pollicis longus muscle. The flexure 
pollicis longus muscle participates in flexure of the thumb, where 
as flexure digitorum superficialis muscle and flexure digitorum 
profundus muscle participate in flexure of the index finger, middle 
finger, ring finger and small finger. It is known that the muscle belly 
of these above mentioned muscles are located on the forearm portion. 
This experimental study was conducted considering that by 
measuring the surface EMG from the forearm portion, it is possible to 
recognize the flexure operation of the finger. 

3. Experimental method 

3.1. Electrode sticking position 

Fig.1 illustrates different measurement points where 
electrodes to be placed for interfacing hand finger operation. 

Fig. 1. Different measurement points where electrodes to be 
placed for interfacing hand finger operation 

To examine strong voltage area, two exploring electrodes 
(Ag-AgCl electrode) along with a reference electrode were 
sticked in a reticular pattern on the forearm muscles for in sum 

total 78-points (7 13) and the intensity of surface EMG at 
different muscles was measured for each crooked finger. The 
reference electrode was sticked near to the elbow where the 
muscle electric potential at the time of finger flexure is known to be 
the minimum. Obtained surface EMG was passed through an 
amplifier and was digitized by an A/D converter before storing into a 
computer hard disk. Depending on the intensity of the surface EMG, 
a position was identified and considered to have participated most 
actively during the crookedness state of a particular finger. Thus five 
locations on the forearm muscles were identified for five different 
fingers (Fig. 2). In Fig.2, position (1) indicates the sticking position of 
electrodes where the muscle surface EMG for the crooked thumb 
appears remarkably intense compared to other fingers. Similarly 
points (2), (3), (4) and (5) indicate the sticking positions of electrodes 
for the crooked index finger, middle finger, ring finger and small 
finger, respectively. 

Fig. 2. Specified positions related to the maximum intensity of 
EMG signals 

3.2. Recognition of crookedness state 

In order to recognize the crookedness states of 5 different 
fingers, 4 different types of steps were considered for each finger 
and the surface EMG for each step was measured to recognize the 
crookedness state. The surface EMG was measured by repeatedly 
crookening the finger (step 1-3) for 5 seconds and then 
straightening (step 0) for another 5 seconds. During measuring 
surface EMG, sampling was done with a frequency of 120 Hz and 
a resolution of 8 bit. Later, frequency analysis was conducted 
within the average frequency region of 20-40 Hz. As the thumb 
has a different structure than the other 4 fingers, the crookening 
method for the thumb was decided separately. 

3.3. Crookening method of thumb 

Fig.3 illustrates the movement of the thumb at each step. 
Step 0: Straightening the thumb 

Step 1: Crookening only Interphalangeal (IP) joint as 
permissible

Step 2: Crookening IP joint and Metacarpo-phalangeal 
(MP) joint as permissible 

Step 3: Crookening IP joint and MP joint as permissible 
after crookening Carpometacarpal (CMP) joint 

Fig. 3. Movement of thumb 

3.4. Crookening method of other 4 fingers 

Fig.4 illustrates the movement of the index finger, middle 
finger, ring finger and small finger at each step. 
Step 0: Straightening the finger 
Step 1: Crookening Proximal Interphalangeal (PIP) 

joint to about 90 degree 
Step 2: Crookening MP joint to about 45 degree and 

PIP joint to about 90 degree 
Step 3 : Crookening finger tip till it touches to the palm 
In case of step 1-3, it is difficult to achieve a desired flexure of 
the Distal Interphalangeal (DIP) joint. So the DIP joint was 
allowed to move independently. 

Fig. 4. Movement of four fingers except a thumb 

4. Experimental results 
Fig. 5-9 illustrate the change in intensity of the surface EMG at 

each electrode sticking position (measurement point) for each 
crooked finger at different crookedness states. According to Fig.5 
(measurement point 1), measured surface EMG is considerably larger 
for a crooked thumb, compared to other crooked fingers, and it 
increases further with the increase of the crookedness state of the 
thumb. In case of other four fingers, the surface EMG at point 1 
seems to be unaffected with the crookening of fingers, or change in 
their crookedness states. So it can be said that by measuring the 
surface EMG at measurement point 1, the crookening and the 
crookedness states of a thumb can be recognized. 

Similarly, Fig.6-9 illustrate relationships between the intensity 
of surface EMG and a crooked index finger, middle finger, ring 
finger and small finger, as well as the amount of their 
crookedness, respectively. So, by measuring the surface EMG at 
measurement points 2, 3, 4 and 5, the crookening and the 
crookedness states of a index finger, middle finger, ring finger 
and small finger, respectively, can be recognized. 

Thus, with the help of the surface EMG, it is possible to 
specify which finger is being crooked. Furthermore, by observing 
the change in surface EMG at each measurement point, it is 
possible to recognize the crookedness state of a particular finger. 
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Fig. 5. Measured EMG signals at measurement point (1) 
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Fig. 6. Measured EMG signals at measurement point (2) 
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Fig. 7. Measured EMG signals at measurement point (3) 
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Fig. 5. Measured EMG signals at measurement point (1) 
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Fig. 6. Measured EMG signals at measurement point (2) 
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Fig. 7. Measured EMG signals at measurement point (3) 
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Fig. 8. Measured EMG signals at measurement point (4) 
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Fig. 9. Measured EMG signals at measurement point (5) 

5. Conclusion 
In this experimental study, the electric current that generates 

on the skin during muscle activity was measured for different 
hand finger operations and the following conclusions were 
obtained. 
1. It is found that there is a specified position related to the 

maximum intensity of EMG signals for each finger. 
2. Hand finger operation can be recognized with the help of 

surface EMG sticked in the specialized placement. 
3. The amount of crookedness of each finger can also be 

recognized with the help of surface EMG, which could be 
used as a machine interface technology in the field of welfare 
equipments, robot hand operation, virtual reality, etc. 
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