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Analysis and modelling

Abstract

Purpose: Most often used methods for prediction of austenite decomposition are described and analysed.
Design/methodology/approach: The austenite decomposition prediction is usually based on continuous cooling 
transformation (CCT) diagrams. The next method is based on semi-empirical approach based on the Scheil’s 
additivity rule. The third method is based on time, t8/5, relevant for microstructure transformation measured on 
Jominy-specimen. Very good results are obtained by artificial neural network (ANN) with learning rule based 
on the error backpropagation algorithm.
Findings: By the comparison of application ability of investigated methods in mathematical modelling and 
computer simulation of austenite decomposition during the cooling of low-alloyed steel, it can be concluded 
that everyone method gives different results, and minimum variation in elemental composition and history of 
cooling may produce extremely different results in microstructure portion. Very good results were achieved by 
the method, which applies the Jominy-test results. In this method the additivity rule and specific performance 
of Jominy-test has been combined.
Research limitations/implications: The investigation was performed on low-alloyed steels.
Practical implications: The results of prediction of microstructure transformations could be used for prediction of 
mechanical properties after a heat treatment and of generation of stresses and strains during a heat treatment.
Originality/value: The ability and applicability of potential methods of austenite decomposition prediction in 
general mathematical modelling of heat treatment of steel are carried out. The finding of this paper will be so 
useful in development new algorithms in mathematical modelling and computer simulation of heat treatment 
of low-alloyed steels.
Keywords: Artificial intelligence methods; Computer simulation; Microstructure transformation; Cooling; 
Additivity rule

1. Introduction 
Heat treatment is a process in which products made of metals 

and alloys are upon thermally in order to change their structure 

and properties in the desired direction. One of the main problems 
with which the theory of heat treatment is considered, is how the 
microstructure of metals and alloys is related with their properties 
of engineering importance. Heating or cooling of a metal can 
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change its microstructure, which causes variations in the 
mechanical and physical properties, and affects the behaviour of 
the metal in processing and operation. 

The properties of steels can be influenced in a wide range by 
changing the thermodynamical properties by suppression of the 
equilibrium states during cooling [1]. 

During a very slow cooling of steel, austenite decomposition is 
controlled by diffusion of iron, carbon and alloying elements, and 
therefore time-dependent. Cooling of austenite with increased cooling 
rates gives no chance to finish diffusion processes, the transformation 
temperatures are lowered, and austenite transforms diffusionless. 

An important consideration in many of the heat treatments is 
the variation in cooling rate between the surface and center of 
heat-treated parts. The differential cooling produces stresses that 
may cause distortion and even cracking. 

Prediction of microstructure transformations is prerequisite 
for successful prediction of mechanical properties after a heat 
treatment and of generation of stresses and strains during a heat 
treatment. Phase transformation modelling is one of the main 
challenges in modelling of heat treatment [2]. 

In this paper four most often used methods for prediction of 
austenite decomposition are described and analysed. The main 
method is based on continuous cooling transformation (CCT) 
diagrams. The next method is based on semi-empirical approach 
based on the Scheil’s additivity rule. The third method of austenite 
decomposition prediction is based on time, t8/5, relevant for 
microstructure transformation measured on Jominy-specimen. Very 
good results are obtained by using artificial neural network (ANN) 
with learning rule based on the error backpropagation algorithm. 
 
 

2. General approach 
 

The microstructure transformations during cooling have been 
extensively investigated experimentally and theoretically. The 
most often used method in prediction of austenite decomposition 
during the cooling is based on isothermal transformation (IT) or 
continuous cooling transformation (CCT) diagrams. CCT 
diagrams are irreplaceable in the clear presentation of 
microstructure transformation during the steel cooling in order to 
predict microstructure composition and hardness after the cooling, 
but results of austenite decomposition depend on concrete history 
of heat treating process [3]. 

On the other hand, many mathematical models based on 
fundamentals of thermodynamics and kinetics have been developed 
to evaluate kinetics of austenite decomposition as well as to predict 
the effect of cooling rate and austenite structure on final 
microstructure and achieved mechanical properties of the products. 

The microstructure transformation kinetics started to be 
intensive investigated in 1930-ties, when Kolmogorov [4] had 
developed first kinetics model of austenite decomposition based 
on nucleation and growing rate of a new phase. However, the 
most often cited in this field are the works of Johnson and Mehl 
[5] and Avrami [6]. Many investigations have proved that those 
models could be efficiently used for simulation of isothermal, 
diffusion-controlled austenite decomposition. For the calculation 
of the transformed austenite during diffusionless transformation 
of austenite to martensite, model proposed by Koistinen and 
Marburger [7] is widely used in literature. 

Many scientists [8-15] had continued afore-mentioned 
investigations in purpose of developing mathematical models that 
will provide better results of austenite decomposition prediction 
during isothermal holding, as well as continuous cooling. In 
investigation of austenite decomposition during continuous 
cooling, most often the cooling curve is approximated with 
a series of isothermal holding, where, for calculation of new phase 
fractions, Scheil’s additivity rule is applied. 

Prediction of microstructure based on Jominy-test results is 
combination of mathematical modelling and experimental testing. 
Time of cooling from 800 to 500°C, t8/5, is relevant for 
microstructure transformation in most structural steels. By 
involving the time t8/5 in the mathematical model, the Jominy-test 
results could be included in the model [16-17]. 

Artificial Neural Networks (ANNs) represent different 
approach of investigation of microstructure transformation. The use 
of ANNs has increased over the past 10 years in materials science 
[18-22] due to achieved good results of prediction. After learning 
the relationship between input and output data, the ANN becomes 
able to generate output data for any new input value. This method is 
very suitable for prediction of materials properties in case when 
some of the relevant factors are unknown, as well as for solving 
complex phenomena for which physical models do not exist. 
 
 

3. Prediction of austenite decomposition 
 
 
3.1. CCT diagram 
 

Most heat treatments of steels involve the continuous cooling of a 
specimen to room temperature. During continuous cooling, the 
transformation is spread over a wide range of temperatures and ferrite, 
pearlite, bainite and martensite may be observed in specimen. 

In Figure 1 the cooling curve of investigated heat treating 
process is shown. It can be expected that with this heat treating 
process microstructure composition will consist of ferrite, 
pearlite, bainite and martensite. 

 
 

Fig. 1. Cooling curve 
 
Figure 2 shows CCT diagrams of low-alloyed steel 34Cr4 (DIN), 

as well as cooling curves and related hardness in HRC or HV after 
the cooling of two different chemical compositions (Table 1). 

 

Table 1. 
Chemical composition of the investigated steels 

Mass concentration of the alloying element, % Chemical 
composition % C % Si % Mn % Cr 

I 0.35 0.23 0.65 1.11 
II 0.36 0.29 0.69 1.09 

 
According to Figure 2, the cooling rate has decisive influence on 

the microstructure obtained. At high cooling rates austenite 
transforms only to martensite, at low cooling rates ferrite and pearlite 
are obtained, at medium cooling rates microstructures of ferrite, 
pearlite, bainite and martensite arise. By changing the cooling rate 
from extremely slow to extremely fast, the hardness can be changed 
for example from 180 HV to 56 HRC (Figure 2a). 

Austenite decomposition is defined by both the cooling time from 
800 to 500 °C, t8/5, and the shape of the cooling curves in the CCT 
diagrams. For the same time t8/5 the microstructure obtained during 

continuous cooling may be quite different if a constant cooling rate or 
an exponential time-temperature cycle is applied [1]. CCT diagrams 
are only valid for the time-temperature cycle used in the actual test. 

Therefore, disadvantage of CCT diagram method is in 
discrepancy of cooling curves of real cooling process and cooling 
curves of CCT diagram. Small discrepancy of cooling curves at the 
beginning of cooling could cause large deviation between cooled 
engineering component and specimen used for CCT diagram 
construction. 

CCT diagrams do not take into consideration history of heat 
treatment and state of materials. 

Advantages of application of CCT diagrams are in their 
simplicity and certainty. 

Table 2 gives the microstructure composition of steel 34Cr4 of 
two different chemical compositions after the cooling from 
austenitizing to room temperature in accordance with cooling curve 
shown in Figure 1. 

 
a) 

b) 

 
 

Fig. 2. Continuous cooling transformation (CCT) diagrams of steel 34Cr4: a) chemical composition I, b) chemical composition II [3]
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change its microstructure, which causes variations in the 
mechanical and physical properties, and affects the behaviour of 
the metal in processing and operation. 

The properties of steels can be influenced in a wide range by 
changing the thermodynamical properties by suppression of the 
equilibrium states during cooling [1]. 

During a very slow cooling of steel, austenite decomposition is 
controlled by diffusion of iron, carbon and alloying elements, and 
therefore time-dependent. Cooling of austenite with increased cooling 
rates gives no chance to finish diffusion processes, the transformation 
temperatures are lowered, and austenite transforms diffusionless. 

An important consideration in many of the heat treatments is 
the variation in cooling rate between the surface and center of 
heat-treated parts. The differential cooling produces stresses that 
may cause distortion and even cracking. 

Prediction of microstructure transformations is prerequisite 
for successful prediction of mechanical properties after a heat 
treatment and of generation of stresses and strains during a heat 
treatment. Phase transformation modelling is one of the main 
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diagrams. The next method is based on semi-empirical approach 
based on the Scheil’s additivity rule. The third method of austenite 
decomposition prediction is based on time, t8/5, relevant for 
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good results are obtained by using artificial neural network (ANN) 
with learning rule based on the error backpropagation algorithm. 
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extensively investigated experimentally and theoretically. The 
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during the cooling is based on isothermal transformation (IT) or 
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diagrams are irreplaceable in the clear presentation of 
microstructure transformation during the steel cooling in order to 
predict microstructure composition and hardness after the cooling, 
but results of austenite decomposition depend on concrete history 
of heat treating process [3]. 
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the effect of cooling rate and austenite structure on final 
microstructure and achieved mechanical properties of the products. 

The microstructure transformation kinetics started to be 
intensive investigated in 1930-ties, when Kolmogorov [4] had 
developed first kinetics model of austenite decomposition based 
on nucleation and growing rate of a new phase. However, the 
most often cited in this field are the works of Johnson and Mehl 
[5] and Avrami [6]. Many investigations have proved that those 
models could be efficiently used for simulation of isothermal, 
diffusion-controlled austenite decomposition. For the calculation 
of the transformed austenite during diffusionless transformation 
of austenite to martensite, model proposed by Koistinen and 
Marburger [7] is widely used in literature. 

Many scientists [8-15] had continued afore-mentioned 
investigations in purpose of developing mathematical models that 
will provide better results of austenite decomposition prediction 
during isothermal holding, as well as continuous cooling. In 
investigation of austenite decomposition during continuous 
cooling, most often the cooling curve is approximated with 
a series of isothermal holding, where, for calculation of new phase 
fractions, Scheil’s additivity rule is applied. 

Prediction of microstructure based on Jominy-test results is 
combination of mathematical modelling and experimental testing. 
Time of cooling from 800 to 500°C, t8/5, is relevant for 
microstructure transformation in most structural steels. By 
involving the time t8/5 in the mathematical model, the Jominy-test 
results could be included in the model [16-17]. 

Artificial Neural Networks (ANNs) represent different 
approach of investigation of microstructure transformation. The use 
of ANNs has increased over the past 10 years in materials science 
[18-22] due to achieved good results of prediction. After learning 
the relationship between input and output data, the ANN becomes 
able to generate output data for any new input value. This method is 
very suitable for prediction of materials properties in case when 
some of the relevant factors are unknown, as well as for solving 
complex phenomena for which physical models do not exist. 
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Fig. 1. Cooling curve 
 
Figure 2 shows CCT diagrams of low-alloyed steel 34Cr4 (DIN), 

as well as cooling curves and related hardness in HRC or HV after 
the cooling of two different chemical compositions (Table 1). 
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Chemical composition of the investigated steels 

Mass concentration of the alloying element, % Chemical 
composition % C % Si % Mn % Cr 

I 0.35 0.23 0.65 1.11 
II 0.36 0.29 0.69 1.09 

 
According to Figure 2, the cooling rate has decisive influence on 

the microstructure obtained. At high cooling rates austenite 
transforms only to martensite, at low cooling rates ferrite and pearlite 
are obtained, at medium cooling rates microstructures of ferrite, 
pearlite, bainite and martensite arise. By changing the cooling rate 
from extremely slow to extremely fast, the hardness can be changed 
for example from 180 HV to 56 HRC (Figure 2a). 

Austenite decomposition is defined by both the cooling time from 
800 to 500 °C, t8/5, and the shape of the cooling curves in the CCT 
diagrams. For the same time t8/5 the microstructure obtained during 

continuous cooling may be quite different if a constant cooling rate or 
an exponential time-temperature cycle is applied [1]. CCT diagrams 
are only valid for the time-temperature cycle used in the actual test. 

Therefore, disadvantage of CCT diagram method is in 
discrepancy of cooling curves of real cooling process and cooling 
curves of CCT diagram. Small discrepancy of cooling curves at the 
beginning of cooling could cause large deviation between cooled 
engineering component and specimen used for CCT diagram 
construction. 

CCT diagrams do not take into consideration history of heat 
treatment and state of materials. 

Advantages of application of CCT diagrams are in their 
simplicity and certainty. 

Table 2 gives the microstructure composition of steel 34Cr4 of 
two different chemical compositions after the cooling from 
austenitizing to room temperature in accordance with cooling curve 
shown in Figure 1. 

 
a) 

b) 

 
 

Fig. 2. Continuous cooling transformation (CCT) diagrams of steel 34Cr4: a) chemical composition I, b) chemical composition II [3]
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Table 2. 
Prediction of microstructure composition by CCT diagrams 

Microstructure composition, % Chemical 
composition ferrite + 

pearlite bainite martensite 

I 13 70 17 
II 100 0 0 

 
By application of two different CCT diagrams of steels with 

very similar chemical composition, extremely different results of 
microstructure composition has been achieved. 
 
 
3.2. Additivity rule based on IT diagram 
 

For the isothermal transformation, there is a general 
agreement on the validity of the Johnson-Mehl-Avrami 
transformation equation [9] that gives the volume fraction X of 
austenite transformed as the function of the constant temperature, 
T and of the time, t: 
 
X = 1 – exp (- k tn) (1) 
 
where k and n are the rate constant and the time exponent, 
respectively. The transformed fraction X in an isothermal 
transformation is a function of time. The rate constant depends on 
the temperature and transformation mechanism. The time 
exponent is a constant in the temperature range when a unique 
transformation mechanism operates [15]. Equation (1) is valid for 
diffusion-controlled austenite decomposition. 

The prediction of austenite decomposition during a 
continuous cooling is still one of the main challenges in modelling 
of heat treatment. The question arises of relating continuous 
cooling, i.e. non-isothermal transformations to the isothermal 
transformations, in order to take advantage of the good knowledge 
available for the latter. This is often accomplished with the help of 
the Scheil’s additivity rule [1, 9, 10, 15]: 
 

1
,0 0

t

TX
dt  (2) 

 
where  (X0, T) represent the isothermal transformation time for 
X = X0 at a temperature T, and t is the total transformation time. 

According to additivity rule, the non-isothermal 
transformation kinetics can be described as the sum of a series of 
the small isothermal transformations. 

Figure 3 shows the scheme for microstructure prediction from 
cooling curve and an isothermal diagram. In figure, the 
temperature range is divided into a series of small finite steps. 
Maintaining the time interval, ti to sufficiently short times 
permits the assumption that the conditions are isothermal over 
each time step. 

It was assumed that each time step produces such a 
transformation as occurs in the isothermal diagram at the same 
temperature. Furthermore, it was accepted that the rate of 
austenite decomposition is constant during the cooling process. 

 
 

Fig. 3. Microstructure composition prediction from cooling curve 
and IT diagram 

 
The volume fraction X of austenite transformed in the time 

interval ti at temperature Ti can be calculated as follows: 
 

i

i

T
tX  (3) 

 

where  (Ti) is the isothermal transformation time at a temperature Ti. 
Additivity rule is complex method, which should take in account 

the variation of transformation rate in various period of cooling. 
Table 3 gives microstructure composition of steel 34Cr4 after 

the cooling from austenitizing to room temperature in accordance 
with cooling curve shown in Figure 1. 
 
Table 3. 
Prediction of microstructure composition by additivity rule based 
on IT diagram 

Microstructure composition, % Chemical 
composition ferrite + 

pearlite bainite martensite 

I 30 62 8 
 
 

3.3. Application of additivity rule with Jominy-
test results 
 

Microstructure composition after the cooling depends on 
actual steel hardness. It can be written that the steel hardness is 
generally equal: 
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In addition, the amount of phases fraction is equal unity: 

 

1100/)%%
)%((%

martensitebainite
pearliteferrite  (5) 

 
By the equations (4) and (5) is not difficult to predict phases 

fraction if both, hardness (HV) of cooling microstructure with 90% or 
50% of martensite and of 10%, 50% or 90% of (ferrite+pearlite), as 
well as hardness of microstructure constituents separately are known. 

 

Results of austenite decomposition are depending on the 
chemical composition of steel, severity of cooling, austenitizing 
temperature and steel history. 

The austenite decomposition results can be estimated based 
on time relevant for microstructure transformation. The 
characteristic cooling time relevant for microstructure 
transformation for most structural steels is the time of cooling 
from 800 to 500 °C, time t8/5 [3]. Involving the time t8/5 in the 
mathematical model of steel cooling, the Jominy-test results can 
be involved in austenite decomposition model. 

Everyone location of Jominy-specimen has one characteristic 
time t8/5. The diagram distance from the quenched end of Jominy-
specimen (Jominy-distance) vs. cooling time t8/5 is shown in 
Figure 4 [3]. 
 

 
 

Fig. 4. Jominy-distance vs. cooling time from 800 to 500 C 
 

If other heat treatment parameters are constant, the austenite 
decomposition results in some location of a cooled specimen 
depend only of the time t8/5. 

It could be written for Jominy-test that phase hardness depends of 
chemical composition (CC), and cooling rate parameter (CRP), that 
corresponds to actual distance from the quenched end of Jominy-
specimen, d. It was adopted that CRP = t8/5. 
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where 

M
dHV  is the hardness of martensite at the distance d from the 

quenched end, 
M

maxHV  is the maximal hardness of martensite, 
B

dHV  is 
the hardness of bainite at the distance d, 

B
maxHV  is the maximal 

hardness of bainite, 
FP

dHV  is the hardness of pearlite and ferrite at the 
distance d, and FP

NHV  is the hardness of pearlite and ferrite in 
normalized state. Characteristic values of hardnesses HV, coefficients 
K and times t8/5 in equations (6), (7) and (8) have to be evaluated 
based on chemical composition of investigated steel combined by 
Jominy-test results. 

Hardness of quenched microstructures with 100%, 90% or 50% 
of martensite can be predicted by using the diagram of hardness at 
different percentages of martensite vs. carbon content after Hodge and 
Orehoski [1, 23] and by Jominy-curve diagram, but the influence of 
chemical composition of steel has to be taken in account. 

Distances from the quenched end of Jominy-specimen with 
martensite fraction of 90% and 50% can be predicted by Jominy-
curve diagram, by conversion of hardness results to distances. 

Distances of 100% of martensite and of 100% of pearlite can 
be predicted by the Jominy-curve. 

The regression relations between the cooling time from 800 to 
500°C for cooling microstructures of 100%, 50%, 10% and 0% of 
pearlite and ferrite are established [17]. 
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where Ta is the austenitizing temperature in K, and ta is the 
austenitizing time in hours. 

Characteristic Jominy-distances for characteristic time t8/5 can 
be estimated using the relation between cooling time and distance 
from the quenched end of Jominy-specimen shown in Figure 4. 

Jominy-test method applies the additivity rule and assumes 
matching of cooling curves of real cooling process and cooling 
curves of CCT diagram. Prediction error of this method could be 
partially reduced by taking in account the hardness value. 

The phase fraction of Jominy-specimen of steel 34Cr4 is 
estimated by computer simulation. Jominy-test results are shown 
on Figure 5. Chemical composition of steel 34Cr4 is 0.36 % C, 
0.28 % Si, 0.63 % Mn, and 1.15 % Cr. Austenitizing temperature 
was equal 850°C. 
 

 
 

Fig. 5. Jominy-curve off steel 34Cr4 

3.2.	�Addictivity rule based on IT 
diagram

3.3.	�Application of additivity rule with 
Jominy test result
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Table 2. 
Prediction of microstructure composition by CCT diagrams 

Microstructure composition, % Chemical 
composition ferrite + 

pearlite bainite martensite 
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By application of two different CCT diagrams of steels with 

very similar chemical composition, extremely different results of 
microstructure composition has been achieved. 
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the temperature and transformation mechanism. The time 
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transformation mechanism operates [15]. Equation (1) is valid for 
diffusion-controlled austenite decomposition. 

The prediction of austenite decomposition during a 
continuous cooling is still one of the main challenges in modelling 
of heat treatment. The question arises of relating continuous 
cooling, i.e. non-isothermal transformations to the isothermal 
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It was assumed that each time step produces such a 
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temperature. Furthermore, it was accepted that the rate of 
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Fig. 3. Microstructure composition prediction from cooling curve 
and IT diagram 

 
The volume fraction X of austenite transformed in the time 

interval ti at temperature Ti can be calculated as follows: 
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where  (Ti) is the isothermal transformation time at a temperature Ti. 
Additivity rule is complex method, which should take in account 
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Fig. 4. Jominy-distance vs. cooling time from 800 to 500 C 
 

If other heat treatment parameters are constant, the austenite 
decomposition results in some location of a cooled specimen 
depend only of the time t8/5. 

It could be written for Jominy-test that phase hardness depends of 
chemical composition (CC), and cooling rate parameter (CRP), that 
corresponds to actual distance from the quenched end of Jominy-
specimen, d. It was adopted that CRP = t8/5. 
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where 

M
dHV  is the hardness of martensite at the distance d from the 

quenched end, 
M

maxHV  is the maximal hardness of martensite, 
B

dHV  is 
the hardness of bainite at the distance d, 

B
maxHV  is the maximal 

hardness of bainite, 
FP

dHV  is the hardness of pearlite and ferrite at the 
distance d, and FP

NHV  is the hardness of pearlite and ferrite in 
normalized state. Characteristic values of hardnesses HV, coefficients 
K and times t8/5 in equations (6), (7) and (8) have to be evaluated 
based on chemical composition of investigated steel combined by 
Jominy-test results. 

Hardness of quenched microstructures with 100%, 90% or 50% 
of martensite can be predicted by using the diagram of hardness at 
different percentages of martensite vs. carbon content after Hodge and 
Orehoski [1, 23] and by Jominy-curve diagram, but the influence of 
chemical composition of steel has to be taken in account. 

Distances from the quenched end of Jominy-specimen with 
martensite fraction of 90% and 50% can be predicted by Jominy-
curve diagram, by conversion of hardness results to distances. 

Distances of 100% of martensite and of 100% of pearlite can 
be predicted by the Jominy-curve. 

The regression relations between the cooling time from 800 to 
500°C for cooling microstructures of 100%, 50%, 10% and 0% of 
pearlite and ferrite are established [17]. 
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where Ta is the austenitizing temperature in K, and ta is the 
austenitizing time in hours. 

Characteristic Jominy-distances for characteristic time t8/5 can 
be estimated using the relation between cooling time and distance 
from the quenched end of Jominy-specimen shown in Figure 4. 

Jominy-test method applies the additivity rule and assumes 
matching of cooling curves of real cooling process and cooling 
curves of CCT diagram. Prediction error of this method could be 
partially reduced by taking in account the hardness value. 

The phase fraction of Jominy-specimen of steel 34Cr4 is 
estimated by computer simulation. Jominy-test results are shown 
on Figure 5. Chemical composition of steel 34Cr4 is 0.36 % C, 
0.28 % Si, 0.63 % Mn, and 1.15 % Cr. Austenitizing temperature 
was equal 850°C. 
 

 
 

Fig. 5. Jominy-curve off steel 34Cr4 
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Diagram of simulated microstructure composition for Jominy-
specimen of steel 34Cr4 is shown on Figure 6. Prediction of 
austenite decomposition results by Jominy-test method was done 
in accordance with cooling curve shown in Figure 1. 

 
 

Fig. 6. Microstructure fraction vs. Jominy-distances 
 

Table 4 gives microstructure composition of steel 34Cr4 after 
the cooling from austenitizing to room temperature (Figure 6). 

 
Table 4. 
Prediction of microstructure composition by application of 
additivity rule with Jominy-test results 

Microstructure composition, % 
ferrite + pearlite bainite martensite 

37 49 14 
 

Comparison of applied methods in prediction of microstructure 
composition of cooled steel 34Cr4 is shown in Table 5. 
 
Table 5. 
Comparison of microstructure composition results 

Microstructure composition, % 
Prediction method ferrite + 

pearlite bainite martensite 

CCT diagram I 13 70 17 
CCT diagram II 100 0 0 

A. r. & IT d. 30 62 8 
A. r. & Jominy-test 37 49 14 

 
 
3.4. Artificial neural network 
 

Besides the given methods, the authors suggest the ANN 
approach in the prediction of microstructure transformation 
during the steel cooling. The static multi layer feed forward ANN 
with learning rule based on the error backpropagation algorithm, 
with momentum and adaptive learning rate, has been applied. 

Every ANN has an input layer, one or more hidden layers and 
one output layer. The number of network inputs and the number of 
network outputs are constrained by the problem that has to be solved. 
The number of hidden layers between network input and output layer, 
as well as the number of neurons in hidden layers, is up to designer. 

The basic mathematical principle of learning by experience in 
ANN corresponds to a nonlinear procedure that maps an input vector 
to an output vector by using free parameters that are called weights 
and biases. The learning process is performed by comparing the 

desired values and actual values obtained by ANN in order to 
minimize the sum-squared error of the ANN, i.e. the goal function E: 
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n
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where N is the size of the learning dataset, dn is the desired 
response, and On is the actual response of the ANN. 

The change of the network weights and biases is given by 
expressions: 
 

(n+1) = (n) + (n) (14) 
 

E  (15) 

 
where (n+1) and (n) are new and old value of parameters, 
respectively, and  is the learning rate coefficient. 

The dataset for learning and testing of ANN is taken from [3]. 
The input data of ANN are the chemical composition: %C, %Si, 
%Mn, %Cr, %Mo, %Ni, the austenitizing temperature, Ta, the 
austenitizing time, ta, the total hardness of cooled steel, HVt and the 
time of cooling from 800°C to 500°C. The output data of ANN are 
the fractions of ferrite and pearlite, F+P and of martensite, M. The 
fraction of bainite, B is subsequently calculated by equation: 
 
% B = 100 % - (% (F + P) + % M) (16) 
 

The dataset for learning of ANN is consisted of nine low-
alloyed steels. More information is given elsewhere [22]. The 
dataset for testing of ANN is given in Table 6. 

Different network topologies were tested, and the best one 
with one hidden layer and the 10-5-2 topology with log-sigmoid 
transfer function with bias was assumed for the calculation. The 
learning rate of the neural network was set to 0.01, whereas the 
learning rate increment and decrement were set to 1.05 and 0.7, 
respectively. The degree of momentum was set to 0.95. The error 
ratio, which determines the ratio of new error to old error, was set 
to 1.04. The maximum number of epochs to learn was 30000, and 
acceptable level of sum-squared error was 0.3. 

Results of prediction of microstructure composition after the 
cooling of steels 16MnCr5*, 15CrNi6**, and 18CrNi8* of testing 
dataset are given on Figure 7, Figure 8, and Figure 9, respectively. 
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Fig. 7. Microstructure composition of 16MnCr5 
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Fig. 8. Microstructure composition of 15CrNi6** 
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Fig. 9. Microstructure composition of 18CrNi8* 

 
Table 6. 
Testing dataset 

 Ck15* 16MnCr5* 15CrNi6** 18CrNi8* 14NiCr14 
C 
% 0.30 0.33 0.50 0.56 0.13 

Si 
% 0.29 0.22 0.31 0.31 0.26 

Mn 
% 0.39 1.12 0.51 0.50 0.46 

Cr 
% 0.12 0.99 1.50 1.95 0.78 

Mo 
% 0.00 0.02 0.06 0.03 0.04 

Ni 
% 0.00 0.12 1.55 2.02 3.69 

Ta 
°C 830 830 830 830 1050 

ta 
min. 15 15 15 15 15 

HVt 

547 
415 
293 
240 

516 
400 
348 
291 

600 
469 
412 
304 

748 
716 
649 
436 

414 
277 
256 
200 

t8/5 
s 

1 
1 
4 
8 

40 
100 
200 
600 

400 
800 

1000 
2000 

400 
600 
1000 
2000 

10 
200 
1000 
40000 

* or ** Composition of carbon in steels is obtained by adding the 
carbon in standard low-carbon steel. 

4. Conclusion 
 

Microstructure transformation causes variations in the 
mechanical and physical properties, and affects the behaviour of 
the metal in processing and operation. Microstructure 
transformation prediction is one of the main challenges in 
modelling of heat treatment. 

In this paper four most often used methods for prediction of 
austenite decomposition was described and analysed. The main 
method is based on continuous cooling transformation (CCT) 
diagrams.The next method is based on semi-empirical approach 
based on the Scheil’s additivity rule. The third method of 
austenite decomposition prediction is based on time, t8/5, 
relevant for microstructure transformation measured on Jominy-
specimen. Very good results are obtained by using artificial 
neural network (ANN) with learning rule based on the error 
backpropagation algorithm. 

Good results of prediction of microstructure transformations 
were achieved by application of CCT diagrams. These diagrams 
are irreplaceable in the clear presentation of microstructure 
transformation during the steel cooling in order to predict 
microstructure composition and hardness after the cooling, but 
results of austenite decomposition depend on concrete history of 
heat treating process. Extremely different results of microstructure 
composition were achieved by application of two different CCT 
diagrams of steels with very similar chemical composition. 

The modified Johnson-Mehl-Avrami transformation equation 
was analyzed, which is based on Scheil’s additivity rule. In 
application of additivity rule the non-isothermal transformation 
kinetics was described as the sum of a series of the small 
isothermal transformations. 

By the comparison of application ability of investigated 
methods in mathematical modelling and computer simulation of 
austenite decomposition during the cooling of low-alloyed steel, it 
can be concluded that everyone method gives different results, 
and minimum variation in chemical composition and history of 
cooling may produce extremely different results in microstructure 
fraction. Very good results were achieved by the method, which 
applies the Jominy-test results. In this method the additivity rule 
and specific performance of Jominy-test has been combined. 

The ANN approach in prediction of microstructure 
transformation during the steel cooling was described very useful. 
The static multi layer feed forward ANN with learning rule based 
on the error backpropagation algorithm, with momentum and 
adaptive learning rate, has been applied. 
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Diagram of simulated microstructure composition for Jominy-
specimen of steel 34Cr4 is shown on Figure 6. Prediction of 
austenite decomposition results by Jominy-test method was done 
in accordance with cooling curve shown in Figure 1. 

 
 

Fig. 6. Microstructure fraction vs. Jominy-distances 
 

Table 4 gives microstructure composition of steel 34Cr4 after 
the cooling from austenitizing to room temperature (Figure 6). 

 
Table 4. 
Prediction of microstructure composition by application of 
additivity rule with Jominy-test results 

Microstructure composition, % 
ferrite + pearlite bainite martensite 
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Comparison of applied methods in prediction of microstructure 
composition of cooled steel 34Cr4 is shown in Table 5. 
 
Table 5. 
Comparison of microstructure composition results 

Microstructure composition, % 
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Besides the given methods, the authors suggest the ANN 
approach in the prediction of microstructure transformation 
during the steel cooling. The static multi layer feed forward ANN 
with learning rule based on the error backpropagation algorithm, 
with momentum and adaptive learning rate, has been applied. 

Every ANN has an input layer, one or more hidden layers and 
one output layer. The number of network inputs and the number of 
network outputs are constrained by the problem that has to be solved. 
The number of hidden layers between network input and output layer, 
as well as the number of neurons in hidden layers, is up to designer. 

The basic mathematical principle of learning by experience in 
ANN corresponds to a nonlinear procedure that maps an input vector 
to an output vector by using free parameters that are called weights 
and biases. The learning process is performed by comparing the 

desired values and actual values obtained by ANN in order to 
minimize the sum-squared error of the ANN, i.e. the goal function E: 
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where N is the size of the learning dataset, dn is the desired 
response, and On is the actual response of the ANN. 

The change of the network weights and biases is given by 
expressions: 
 

(n+1) = (n) + (n) (14) 
 

E  (15) 

 
where (n+1) and (n) are new and old value of parameters, 
respectively, and  is the learning rate coefficient. 

The dataset for learning and testing of ANN is taken from [3]. 
The input data of ANN are the chemical composition: %C, %Si, 
%Mn, %Cr, %Mo, %Ni, the austenitizing temperature, Ta, the 
austenitizing time, ta, the total hardness of cooled steel, HVt and the 
time of cooling from 800°C to 500°C. The output data of ANN are 
the fractions of ferrite and pearlite, F+P and of martensite, M. The 
fraction of bainite, B is subsequently calculated by equation: 
 
% B = 100 % - (% (F + P) + % M) (16) 
 

The dataset for learning of ANN is consisted of nine low-
alloyed steels. More information is given elsewhere [22]. The 
dataset for testing of ANN is given in Table 6. 

Different network topologies were tested, and the best one 
with one hidden layer and the 10-5-2 topology with log-sigmoid 
transfer function with bias was assumed for the calculation. The 
learning rate of the neural network was set to 0.01, whereas the 
learning rate increment and decrement were set to 1.05 and 0.7, 
respectively. The degree of momentum was set to 0.95. The error 
ratio, which determines the ratio of new error to old error, was set 
to 1.04. The maximum number of epochs to learn was 30000, and 
acceptable level of sum-squared error was 0.3. 

Results of prediction of microstructure composition after the 
cooling of steels 16MnCr5*, 15CrNi6**, and 18CrNi8* of testing 
dataset are given on Figure 7, Figure 8, and Figure 9, respectively. 
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Fig. 7. Microstructure composition of 16MnCr5 
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Fig. 8. Microstructure composition of 15CrNi6** 
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Fig. 9. Microstructure composition of 18CrNi8* 

 
Table 6. 
Testing dataset 

 Ck15* 16MnCr5* 15CrNi6** 18CrNi8* 14NiCr14 
C 
% 0.30 0.33 0.50 0.56 0.13 

Si 
% 0.29 0.22 0.31 0.31 0.26 

Mn 
% 0.39 1.12 0.51 0.50 0.46 

Cr 
% 0.12 0.99 1.50 1.95 0.78 

Mo 
% 0.00 0.02 0.06 0.03 0.04 

Ni 
% 0.00 0.12 1.55 2.02 3.69 
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* or ** Composition of carbon in steels is obtained by adding the 
carbon in standard low-carbon steel. 

4. Conclusion 
 

Microstructure transformation causes variations in the 
mechanical and physical properties, and affects the behaviour of 
the metal in processing and operation. Microstructure 
transformation prediction is one of the main challenges in 
modelling of heat treatment. 

In this paper four most often used methods for prediction of 
austenite decomposition was described and analysed. The main 
method is based on continuous cooling transformation (CCT) 
diagrams.The next method is based on semi-empirical approach 
based on the Scheil’s additivity rule. The third method of 
austenite decomposition prediction is based on time, t8/5, 
relevant for microstructure transformation measured on Jominy-
specimen. Very good results are obtained by using artificial 
neural network (ANN) with learning rule based on the error 
backpropagation algorithm. 

Good results of prediction of microstructure transformations 
were achieved by application of CCT diagrams. These diagrams 
are irreplaceable in the clear presentation of microstructure 
transformation during the steel cooling in order to predict 
microstructure composition and hardness after the cooling, but 
results of austenite decomposition depend on concrete history of 
heat treating process. Extremely different results of microstructure 
composition were achieved by application of two different CCT 
diagrams of steels with very similar chemical composition. 

The modified Johnson-Mehl-Avrami transformation equation 
was analyzed, which is based on Scheil’s additivity rule. In 
application of additivity rule the non-isothermal transformation 
kinetics was described as the sum of a series of the small 
isothermal transformations. 

By the comparison of application ability of investigated 
methods in mathematical modelling and computer simulation of 
austenite decomposition during the cooling of low-alloyed steel, it 
can be concluded that everyone method gives different results, 
and minimum variation in chemical composition and history of 
cooling may produce extremely different results in microstructure 
fraction. Very good results were achieved by the method, which 
applies the Jominy-test results. In this method the additivity rule 
and specific performance of Jominy-test has been combined. 

The ANN approach in prediction of microstructure 
transformation during the steel cooling was described very useful. 
The static multi layer feed forward ANN with learning rule based 
on the error backpropagation algorithm, with momentum and 
adaptive learning rate, has been applied. 
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