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Abstract

Purpose: The study aims to predict the loss factor properties of composite laminated plates.
Design/methodology/approach: Elastic constants of laminates and damping properties have been determined 
by using an identification procedure based on multi-level theoretical approach.
Findings: The present paper is the first attempt at proposing a novel adaptive procedure to derive loss factor 
parameters for  sandwich plate’s vibration.
Research limitations/implications: In the future the extension of the present approach to sandwich plates with 
different core materials will be performed in order to test various sandwich design.
Practical implications: Structures composed of laminated materials are among the most important structures 
used in modern engineering and especially in the aerospace industry. Such lightweight and highly reinforced 
structures are also being increasingly used in civil, mechanical and transportation engineering applications.
Originality/value: The main advantage of the present method is that it does not rely on strong assumptions on 
the model of the plate. The key feature is that the raw models can be applied at different vibration conditions of 
the plate by a suitable analytical or approximation method.
Keywords: Computational material science; Composite materials; Laminated plates; Elastic constants

1. Introduction 
The simple laminate theories [1-7] are most often incapable of 

determining the 3-D stress field in the lamina. Thus, the analysis of 
composite laminates may require the use of laminate independent 
theory or a 3-D elasticity theory. Exact three-dimensional solutions 
[8-18] have shown the fundamental role played by the continuity 
conditions for the displacements and the transverse stress components 
at the interfaces between two adjacent layers for an accurate analysis 
of multilayered composite thick plates. Further, these elasticity 
solutions demonstrated that the transverse normal stress plays a 
predominant role in these analyses. However, accurate solutions 
based on the three-dimensional elasticity theory are often intractable.  

The limitations of the analysis based on the displacement 
formulation motivated the work [19-20] in which the mixed variation 
theorem for the dynamic analysis of multilayered plates was used. A 
semi-analytical method has been developed in to obtain the natural 
frequencies of vibration of simply- supported laminated composite 
cross-ply plates. Continuity of the transverse stresses as well as the 

displacements have been explicitly satisfied at the lamina interfaces in 
these models. Further, these models have been formulated by 
considering a local Cartesian co-ordinate system at the mid-surface of 
each individual layer. Six degrees of freedom (DOF), viz. three 
displacement components u, v and w (along x, y and z directions, 
respectively) and three transverse stress components are expressed at 
the bottom as well as the top surface of each individual layer. The 
time dependent axial and the transverse displacements along the x, y 
and z directions of any point can be expressed using power series 
expansions [8-14]. 

2. Some aspects of the laminated beam 
modeling

Exact static solutions for composite laminates in cylindrical 
bending.  Bending by moment. Let us consider the exact solution 
for uniform cylindrical bending of layered symmetric composite 
laminates. The governing equations are: 
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If the stress-strain state is uniform, then these relations must hold, 
because  on the face plate surfaces is equal to 0 
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If the stress xx  is not equal to 0, the following assumption must 
be made
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From Eq.(1-5) we may obtain for the displacement 
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For the bending moment we obtain 
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Here for the material non homogeneity 
)(,, ZCZZC xzxx all may be functions of the normal 

coordinate Z  of the plate. Thus, by comparison with a uniform 
Tymoshenko beam of the same depth, an equation for the bending 
rigidity of a uniform equivalent beam may be written 
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Bending by force. In this case the primary assumptions are 
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Next by integration for the displacement we obtain 
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By substituting Eq.(11) into Eq.(1) we can derive (for a 
symmetrically laminated plate, but the same may be made for 
arbitrary lamination) 
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where for the tangential stress  and the constant  we have 
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In the above equations  A is an arbitrary constant number. If we 
equate the tangential force Q to 1, then from (12,13) 

1

2111 dzzdzAdzQ
H

H

H

z

H

H
 (14) 

Thus, by comparison with a uniform Tymoshenko beam of 
the same cross section, we may write an equation for the 
transverse rigidity of a uniform equivalent beam 
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where  is given by Eq.(13). It may be seen that from Eq.(12) 
we may  obtain the same bending rigidity as in Eq.(8).  

Asymptotic approach. Above (Part 1) we have obtained 
the exact solution for the statically loaded sandwich plate by 
the cylindrical bending. The equivalent Tymoshenko beam is 
established with the same bending and tangential rigidity. 
Naturally, by the dynamic loading the static approach is 
incorrect. It may be valid only for the thin plates and lower 
frequency excitation. As was said previously, many authors 
have maid such a work. But there assumption were submerged 
or to one layer model, or to hypothesis like [1-7]. Such 
theories based on mixed approach or another variation 
principles [19] are not simply proved mathematically. Thus, 
here we should applied Galerkin method to linear elasticity 
dynamic problem [20]. By the Banach fixed-point theorem 
[20] a) problem has a unique solution; b) we have a priory 
estimate; c) convergence of the Galerkin method. 

 

Let us consider now such kinematical assumptions (for 
symmetrical three layered plate) 
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By substituting Eq.(1,2) to 
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and by assuming the unifrequency vibration we obtain the set of 
linear algebraic equations  
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For grater number of lamina may be wrote 
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The frequency equation should be written such  
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Damping. Loss factors is found by analytical solutions (1-15) 
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In Fig.1. the loss factor (Eq.16) is presented for the beams 
with the  various mechanical properties of cover layers. 
Nondimension mechanical parameters were: Cxx(1)=1, 
Cxx(2)=10. Another parameters (Czz, Cxz, G) were changed. 

In Fig.2 the loss factors are shown for the three-layered beam 
with thin elastic interlayer (fife-layered beam). The depth of the 
interlayer  was 0.03H. Mechanical properties of the interlayers 
were: Cxxi/Cxx(2)= Gi/G(2)= Cxzi/Cxz(2)= Czzi/Czz(2)=0.1. 
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Fig.1. (a) loss factor in n a symmetrical three-layered beam (EL/H=1/30); (b) loss factor in a symmetrical three-layered beam (EL/H=1/3)
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where  is given by Eq.(13). It may be seen that from Eq.(12) 
we may  obtain the same bending rigidity as in Eq.(8).  

Asymptotic approach. Above (Part 1) we have obtained 
the exact solution for the statically loaded sandwich plate by 
the cylindrical bending. The equivalent Tymoshenko beam is 
established with the same bending and tangential rigidity. 
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frequency excitation. As was said previously, many authors 
have maid such a work. But there assumption were submerged 
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In Fig.1. the loss factor (Eq.16) is presented for the beams 
with the  various mechanical properties of cover layers. 
Nondimension mechanical parameters were: Cxx(1)=1, 
Cxx(2)=10. Another parameters (Czz, Cxz, G) were changed. 

In Fig.2 the loss factors are shown for the three-layered beam 
with thin elastic interlayer (fife-layered beam). The depth of the 
interlayer  was 0.03H. Mechanical properties of the interlayers 
were: Cxxi/Cxx(2)= Gi/G(2)= Cxzi/Cxz(2)= Czzi/Czz(2)=0.1. 
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Fig.1. (a) loss factor in n a symmetrical three-layered beam (EL/H=1/30); (b) loss factor in a symmetrical three-layered beam (EL/H=1/3)
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Fig.2. (a) loss factor in a symmetrical fife-layered beam (changing properties of the face; ( b) loss factor in a symmetrical fife-layered beam 
(changing properties of the face layers,EL/H=1/30) 
 
Conclusions  
 

Various displacement models have been developed by 
considering combinations of displacement fields for in-plane and 
transverse displacements inside a layered beam to investigate the 
phenomenon of vibrations in laminated composite plates. 
Numerical evaluations are obtained for loss factor of three- an 
fife-layer plates. 
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