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AbstrAct
Purpose: Results of laser treatment at cryogenic conditions and its influence on microstructure, microhardness 
and cavitation resistance of the SUPERSTON alloy are presented in this paper.
Design/methodology/approach: New method of the laser remelting specimens diped in liquid nitrogen made 
by the CO2 laser with 4000 W laser beam power and scanning velocity 0.5 and 1.0 m/min was employed. 
Observation microstructure was carried out by scanning electron microscope. Hardness of cross-section of the 
surface layer has been measured by the Vickers microhardness under load 0.49 N. Cavitation test in the water 
using rotating disc facility was done.
Findings: Laser remelting let obtain fine microstructure in surface layer and increase of microhardness and 
cavitation resistance, compared to casting the SUPERSTON alloy.
Research limitations/implications: The future investigations connected with environment conditions should be 
extend of internal stresses in the SUPERSTON alloy after laser remelting at cryogenic conditions.
Practical implications: Obtained results point at possibility of the increase hardness and cavitation resistance 
of the parts worked in cavitation conditions.
Originality/value: The propose laser treatment at cryogenic conditions could be used for surface consolidation 
of the copper alloys applied for ship propellers.
Keywords: Surface treatment; Laser remelting; Copper alloys; Cavitation

1. Introduction 
The purpose of this article is to show the method of the laser 

remelting at cryogenic conditions of the SUPERSTON alloy and 
its influence on microstructure, hardness and cavitation resistance 
[1-8]. 

The SUPERSTON alloy is used for marine propellers which 
can undergo cavitation during exploitation. The laser remalting in 
liquid nitrogen is one of the method of reducing cavitation 
wearing of the copper alloys used for the ship propellers [9-15]. 

2. Methodology and materials for 
research 

Chemical composition of the SUPERSTON alloy used for 
marine propellers, as the investigated material is shown in Table 
1. Laser remelting was done by the TRUMPF laser TLF 6000 
turbo. The laser beam dimension 1x20 mm, power 4000 W, 
scanning velocity: 0.5 and 1.0 m/min were used in this process. 
The laser treatment of the SUPESTON alloy was made after 
immersion specimens in liquid nitrogen (temperature -1950C). 
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Table 1. 
Chemical composition of the SUPERSTON alloy (wt. %) 

Cu Al Mn Fe Ni Zn Sn Pb
76.6 7.1 10.4 3.8 2.0 0.1 0.05 0.01

After laser treatment the microstructure of the surface and 
cross-section the SUPERSTON alloy was observed by scanning 
electron microscope (SEM).

Cavitation test in the water (average temperature 200C) was 
performed at rotating disc facility (Fig. 7). During the cavitation 
process the kinetics of the mass loss was determined. 

3. Test results 

3.1. Microstructure of the SUPERSTON alloy 

Fig. 1. Surface microstructure of laser remelted the SUPERSTON 
alloy (4000W, 0.5m/min) 

Fig. 2. Surface microstructure of laser remelted the SUPERSTON 
alloy (4000W, 1.0m/min) 

Surface morphology of the SUPERSTON alloy remelted with 
4000 W power, scanning velocity 0.5 and 1.0 m/min is presented 
in Figs 1 and 2. 

Microstructure of casted and remelted the SUPERSTON alloy 
is shown in Figs 3 and 4. Microstructure of the SUPERSTON 
alloy as coasting consist of  phase, eutectoid mixture and 
manganese-iron phase (Fig. 3). After laser remalting fine 
microstructure without cracks in the surface layer is observed. 
(Fig. 4). 

Average thickness of the remelted layer is about 300µm and 
demonstrate a structural connection with base material (Fig. 4). 

Fig. 3. Microstucture of the casted the SUPERSTON alloy 

Fig. 4. Cross section microstructure of remelted the SUPERSTON 
alloy 

3.2. Microhardness of the SUPERSTON alloy

Microhardness in the remelted layer of the SUPERSTON 
alloy made by the Vickers method under load 0.49 N. 

Results of the microhardness measurements are presented in 
Figs 5 and 6.  

Fig. 5. Microhardness in cross-section of laser remelted layer of 
the SUPERSTON alloy (4000W, 0.5m/min) 

Fig. 6. Microhardness in cross-section of laser remelted layer of 
the SUPERSTON alloy (4000W, 1.0 m/min) 

3.3. Cavitation test
The cavitation resistance test of the SUPERSTON alloy after 

laser remelting at cryogenic conditions was performed at the 
rotating disc facility Fig. 7.

Fig. 7. The rotating disc facility for measurements of cavitation 
resistance 

Average mass loss of the specimens after 5.25h of the 
cavitation test is presented in Fig. 8.  

View of the base material and laser remelted specimens made 
of the SUEPRESTON alloy after cavitaton test is shown in Fig. 9. 
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Fig. 8. Average mass loss of the SUPESTON alloy remelted in 
the different conditions 

3. Conclusion
Microstructure of the SUPERSTON alloy after laser remelting 

at cryogenic conditions is fine-crystalline without cracks and 
manganese-iron phase. 
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3. Conclusion
Microstructure of the SUPERSTON alloy after laser remelting 

at cryogenic conditions is fine-crystalline without cracks and 
manganese-iron phase. 
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Fig. 9. Surface of the SUPERSTON alloy after cavitation test by 5.25h: a) 4000W, 0.5m/min; b) 4000W, 1.0m/min; c) base material - as casting 

Laser remelting caused the increase hardness of the 
SUPERSTON alloy to 200 HV 0.05. 

Most beneficial increase of cavitation resistance (about 30%) 
obtained for laser remelting the SUPERSTON alloy with 4000 W 
power and 0.5 m/min scanning velocity. 
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