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Abstract
Purpose: Purpose of this paper is to present a mathematical model of rod and beam systems in transportation. 
The mathematical model is presented in the form of dynamical flexibility of systems. Systems are considered as 
flexible rotating rods and flexible rotating beams. In solution there was took into account the interaction between 
the main motion and local vibrations of elements.
Design/methodology/approach: The dynamical flexibility was derived by the approximate method, the 
Galerkin’s method. The example dynamical characteristics were presented in form of attenuation-frequency 
characteristics. The dynamical flexibility was derived on the basis of known equations of motion derived in 
other publications.
Findings: There can be observed so called the transportation effect. This effect consist in that when analyzed 
system rotates with some angular velocity in the characteristic of dynamical flexibility we can notice additional 
poles and after increasing angular velocity it is noticeable that created modes are symmetrically propagated from 
the original mode. It is also palpable fact, instead of the original mode there is created zero.
Research limitations/implications: Analyzed systems are simple linear type beams and rods in rotational 
motion. Motion was restricted to plane motion. Future research ought to consider complex systems, damped 
models and also nonlinearity.
Practical implications: Practical implications of derived mathematical models of beam and rod systems both 
the free-free ones and fixed ones is a possibility of derivation of the stability zones of analyzed systems and 
derivation of eigenfrequencies and zeros in the way of changing the value of angular velocity.
Originality/value: Presented models apply to rotating flexible rod and beam systems with taking into 
consideration the transportation effect. It is a new approach of analyzing rod and beam systems and can be put 
to use in modelling and analyzing machines and mechanisms in rotational transportation.
Keywords: Applied mechanics; Numerical techniques; Vibrations; Transportation effect

1. Introduction 

There are many technical problems connected with vibrations 
in contemporary technical sciences and there are many methods 
of analyzing vibrations. One of the most popular method is a 
method of dynamical flexibility. This method can be used both to 
discrete and continuous systems. Thank to this method we can 

very easily assign resonance zones and find the amplitude of 
vibrations of the analyzed element, find the zeros of dynamical 
characteristics where the vibrations are minimally. 

In this thesis considered problems apply to rotational beam 
and rod systems. The rotation is treated as transportation 
movement. In the literature [2-6, 12-13] there are publications 
connected with the subject area of vibrating systems in 
transportation as distinguished from ones connected with the 
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stationary systems [1, 7-11, 14-19]. There are derived 
mathematical model in form of dynamical flexibility of the 
system. The dynamical flexibilities were derived on the basis of 
formerly derived equations of motion. 

There are many ways of minimizing amplitudes of vibrations 
for example in the way of changing forces acting into the systems, 
changing framework of system or changing the geometrical or 
physical parameters of the system.  

2. Dynamical flexibility of rod systems 

In this section there was presented the dynamical flexibilities 
of rod systems both in form of mathematical model and the 
dynamical characteristics on the chart (Fig. 1). The equation (1) 
applies to the dynamical flexibility of stationary free-free system 
derived by the Galerkin’s method.  
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where:
Y( ) – the dynamical flexibility in function of frequency of 
extorted force,
A – the cross-section of rod, 
l – length of the rod, 

 – mass density of the rod, 
n – mode of vibrations of rod,

a – velocity of the wave propagation in the rod, 
 – frequency of vibrations, 

x – the position of analyzed section. 

The equation (2) presents the dynamical flexibility of the 
stationary fixed rod.  
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The equation (3) is a dynamical flexibility of free-free rod system 
rotating with the angular velocity .
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The equation (4) is a dynamical flexibility of fixed rod system 
rotating with the angular velocity .
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Fig. 1. The dynamical flexibility of free-free rod rotating with angular velocity equals 1000 rad/s 

3. Dynamical flexibility of beam systems 

This section presents the dynamical flexibilities of beam systems 
both the stationary ones and in transportation as well. The results are 
presented as mathematical models of analyzing systems derived by 
the Galerkin’s method and as dynamical characteristics on charts 
presented onto Figures (Fig. 2 and Fig. 3). 

The equation (5) presents dynamical flexibility of free-free 
stationary beam systems derived on base of known equations of 
motion of this beam. 
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where:
IZ – geometric momentum of inertia, 
E – Young modulus, 
c – the formula (6): 
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The equation (8) presents dynamical flexibility of fixed stationary beam 
systems derived on base of known equations of motion of this beam. 
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The dynamical flexibility of rotating free-free beam with angular 
velocity signed as  with the same X(x) as in the equation (7). 

2 2
0

22 2 2

4
2 2 2

241
2 2 2 2 2 2

2 1
2

.
2 1 4

2

k

n

n

n

X l X x
Y

A

nc X l X x
l

nA c
l

 (12) 

4
2 2 2

241
2 2 2 2 2 2

2 1
2

,
2 1 4

2

n

n

nc X l X x
l

Y
nA c

l

 (13) 

where:
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In the Figure 2 the dynamical flexibility of the free-free beam  
rotating with angular velocity equal 100 rad/s was presented. 

Fig. 2. Dynamical flexibility of the free-free beam system rotating 
with angular velocity equal 100 rad/s 

In the Figure 3 there was presented the dynamical flexibility of 
fixed beam rotating with angular velocity equal 100 rad/s. 

Fig. 3. Dynamical flexibility of the fixed beam system rotating 
with angular velocity equal 100 rad/s 
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stationary systems [1, 7-11, 14-19]. There are derived 
mathematical model in form of dynamical flexibility of the 
system. The dynamical flexibilities were derived on the basis of 
formerly derived equations of motion. 

There are many ways of minimizing amplitudes of vibrations 
for example in the way of changing forces acting into the systems, 
changing framework of system or changing the geometrical or 
physical parameters of the system.  

2. Dynamical flexibility of rod systems 

In this section there was presented the dynamical flexibilities 
of rod systems both in form of mathematical model and the 
dynamical characteristics on the chart (Fig. 1). The equation (1) 
applies to the dynamical flexibility of stationary free-free system 
derived by the Galerkin’s method.  
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where:
Y( ) – the dynamical flexibility in function of frequency of 
extorted force,
A – the cross-section of rod, 
l – length of the rod, 

 – mass density of the rod, 
n – mode of vibrations of rod,

a – velocity of the wave propagation in the rod, 
 – frequency of vibrations, 

x – the position of analyzed section. 

The equation (2) presents the dynamical flexibility of the 
stationary fixed rod.  
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The equation (3) is a dynamical flexibility of free-free rod system 
rotating with the angular velocity .
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The equation (4) is a dynamical flexibility of fixed rod system 
rotating with the angular velocity .
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Fig. 1. The dynamical flexibility of free-free rod rotating with angular velocity equals 1000 rad/s 

3. Dynamical flexibility of beam systems 

This section presents the dynamical flexibilities of beam systems 
both the stationary ones and in transportation as well. The results are 
presented as mathematical models of analyzing systems derived by 
the Galerkin’s method and as dynamical characteristics on charts 
presented onto Figures (Fig. 2 and Fig. 3). 

The equation (5) presents dynamical flexibility of free-free 
stationary beam systems derived on base of known equations of 
motion of this beam. 
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where:
IZ – geometric momentum of inertia, 
E – Young modulus, 
c – the formula (6): 
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The equation (8) presents dynamical flexibility of fixed stationary beam 
systems derived on base of known equations of motion of this beam. 
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The dynamical flexibility of rotating free-free beam with angular 
velocity signed as  with the same X(x) as in the equation (7). 
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In the Figure 2 the dynamical flexibility of the free-free beam  
rotating with angular velocity equal 100 rad/s was presented. 

Fig. 2. Dynamical flexibility of the free-free beam system rotating 
with angular velocity equal 100 rad/s 

In the Figure 3 there was presented the dynamical flexibility of 
fixed beam rotating with angular velocity equal 100 rad/s. 

Fig. 3. Dynamical flexibility of the fixed beam system rotating 
with angular velocity equal 100 rad/s 

3.	�Dynamical flexibility of beam 
systems



Short paper174 READING DIRECT: www.journalamme.org

Journal of Achievements in Materials and Manufacturing Engineering Volume 29 Issue 2 August 2008

4. Conclusions 
The comfortable method of analyzing vibrations is a method of 

dynamical flexibility presented in this thesis. The numerical 
application Modyfit was used to generate the dynamical 
characteristics shown in this work. Working motion treated here as 
transportation changes the dynamical characteristics and moves the 
zeros and modes of dynamical flexibility together with increase of 
angular velocity both rods and beams. The so called transportation 
effect has more affect onto beam systems than rod ones. 
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