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Abstract

Purpose: In material engineering the images obtained by various methods are the source of different information 
about materials. The artificial intelligence tools can be employed for automatic method for analysis of scanning 
electron microscope metallographic images of elements after long time operating in creep services.
Design/methodology/approach: The methodology allows to work out a system of automatic classification of 
internal damages in 13CrMo4-5 steel working in creep conditions on the base of computational images analysis 
by the use of artificial neural networks. Input vectors of artificial neural networks were optimized by the use of 
genetic algorithms.
Findings: The methodology of digital image analysis allowing identification of geometrical coefficients 
characterizing damages in the materials after long-time operating in creep conditions and methodology of 
classification of these damages by the use of artificial neural network were evaluated.
Practical implications: The presented method can be use as a practical application for classification of creep-
damages of elements power industry installations components operating in creep conditions.
Originality/value: Applying of images analysis and neural networks to identification and classification of 
internal damages of 13CrMo4-5   steel working in creep conditions could shorten the time of classification and 
eliminate of many subjective errors made by humans.
Keywords: Creep; Neural networks; Steels; Image analysis

1. Introduction 
Steel 13CrMo4-5 is one of the base materials use for devices 

in refinery-petrochemical, chemical and power engineering 
industry operating under extreme conditions of temperature, 
pressure and aggressive environment. The development of power 
plant technology towards larger units and higher efficiencies is 
linked to the development of creep resistant ferritic steels.

Seamless tube and pipes for boilers are manufactures from 
materials, which are able to withstand high temperatures and high 
pressures. Greatest technical requirements of the production process 

and also the most stringent control regulations in order to guarantee 
their durability and reliability over a period. The boiler tubes must 
be able to operate at high pressures and temperatures for long 
periods. At high temperature a constant load produces a micro 
structural variation of the metallic material, this brings a 
progressive reduction of the properties of the material itself [2,4]. 

Exploitations in these conditions caused changes of the 
material’s structure, decreasing of properties and the development 
of damage processes of materials. Element operating in such 
conditions should be manufacture from materials characterizing 
good ability to remain mechanical properties in elevated 
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temperature under loading and the resistance on the acting of 
chemical factors in elevated temperature, mainly on the acting of 
oxidizing gases. High costs of installations increase of working 
parameters, efficiency and reliability cause intensification in the 
area of modernization, diagnostic and durability extension of 
devices and their elements [11,12]. 

Artificial neural networks have wider application possibilities in 
the area of materials science that allow to their use in solving new 
and classical problems and matters because they allows to solve 
non-linear problems which are the main issue in that field [6-
8,10,15,16]. 

The paper shows the computer assisted method employing 
image analysis, shape coefficients, neural networks and genetic 
algorithms for the automatic classification of damages of materials 
use for power systems in creep service. 

2. Experimental procedure 
Creep resistant steels are mainly use to build turbines, 

whereas tubes, pipes, plates and fittings are the typical products 
for application in pressure vessels, boilers and piping systems. 
Material for investigation was acquired from these elements of 
power industry pressure installation long-time operating in creep 
conditions. Elements were made from the 13CrMo4-5 steel and 
their working conditions were as follows: calculation temperature 
520-560°C, real stress 35-120MPa, working time 60000-230000h. 
The chemical composition of this steel is shown in Table 1.  

Table 1. 
Chemical composition of 13CrMo4-5 steel according to the Polish 
standard PN-EN 10028-2:2005 [9] 

Mass chemical composition [wt.%] 
C Mn Si P S Cr Mo N Cu

0.08-0.18 0.4-1 <0.35 0.025 0.01 0.7-1.15 0.4-0.6 <0.012 0.3

During the creep process in the structure of materials are 
formed singular voids, chains of voids, coalescence of voids, and 
micro- macrocracks. These elements allow characterizing the 
degree of materials exhaust. 

One of the method allowing to obtain essential information 
about materials’ structure and properties is image analysis so this 
method is more commonly use in material science. Images from 
scanning electron microscope, transmission electron microscope or 
confocal microscope are saved or converted to digital format and 
allow for objective interpretation. 

To solve the problem of internal damages classifications in 
steels working in creep conditions, the metallographic structure 
images from scanning electron microscope (Fig. 1) were used and 
the following methodology was applied: 

initial processing of images (unification of format, contrast 
and resolution), 
analysis of image, 
calculation of area (S) number of pixels inside the damage, 
calculation of circumferences of chosen element (L) number of 
pixels on the damage’s circumstance, distance between 
neighbouring pixels is equal 1 (side) and 2 (diagonal), 
calculation of distances between objects, 

Feret’s diameter describing extent of damages in vertical 
Df (0°) and in horizontal Df (90°), 
Feret’s coefficient characterizing elongation of damage 
described by: 

Fig. 1. Structure of internal damages of 13CrMo4-5 steel (SEM) 
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application of neural networks to degree of internal damages 
classifications, 
optimization of input vector of artificial neural network by the 
genetic algorithms, 
evaluation of computer program for internal damages’ degree 
classification.  
Quantitative values describe the features of analysed image and 

allow for converting the image into the set of digit describing it than 
the direct draw of conclusions is possible. Interpreted features can 
be divided into local (averaging of image element) and global one 
(group of image elements). The features are determined in indirect 
way on the base of the measurements made for analyzed image. 
Attributes describing element are converted to determine their 
characteristic features. Shape analysis converts the features that 
correctly determine their shapes and for elements with similar shape 
equal values are assigned. For calculation of numerical values of 
geometrical shapes are used shape’s coefficients.  

The procedure should take into account the minimization of 
measurements errors (good sample lighting, magnification, grey 
threshold ) to obtain  required boundaries separation.  

The presence of internal damages, independent of the degree 
of structure changes, decides the possibilities of the element 
exploitations. The classification of damages versus the degree of 
material exhaust consists of four main classes A, B, C, and D with 
subclasses. The classification of internal damages was simplified 
to 5 main classes to meet the needs of neural network model, the 
additional 0 classes with no internal damages of the structure is 
introduced [1,3]:  

class 0 – structure close to the initial state, 
class A –  nucleation of voids, 
class B – development of voids, 
class C – development of micro-cracks, 
class D – development of macro-cracks. 

The choice of the number and kind of artificial neural network input 
data were made by the use of genetic algorithms. For optimisation the 
mask determining which of the geometrical coefficients should be 
applied as the input of neural network were used. 

Genetic algorithms choose the best input vectors of the 
artificial neural network on the base of chains creating and 
selection. The choice is based on so called population of 
offspring. They take the main features of their parents and modify 
properties and specific problem is solved by them a little bit better 
or worse than their parents. Further multiplication is based on the 
selection of that individuals, that classify the damaged of 
materials and make the smallest errors. 

The optimisation taking into account the quality of 
classification of variable independent vector with the use of 
ordinal crossing was applied. This method allows for creating new 
individuals by the combination of their parents features and 
mutation. Table 2 shows option of genetic algorithms for which the 
smallest value of error of geometrical coefficients were obtained. 

Table 2.  
Options of genetic algorithms
Size of population 140 

Number of generation 110 

Coefficient of mutation 0.2 

Coefficient of crossing 1 

Correct classification is able thanks to use of many geometrical 
coefficients. They allow to distinguish damages with the same values 
of geometrical coefficients (classification to the same class) and with 
the different ones (classification to different class). 

In worked out initial model of artificial neural network on the 
entry there was 15 geometrical coefficients: area (S), 
circumferences (L), coefficient to roundness (Wk), Malinowska’s 
coefficient (Wm), coefficient of circularity1 (Wc1) and circularity 
2 (Wc2), maximum (MinOdl) and minimum distance (MaxOdl), 
horizontal and vertical Feret’s diameters (SFpoz, SFpion), Blair-
Bliss coefficient (Wbb), Feret’s coefficient (Wf), Haralick’s 
coefficient (Wh), nondimensional coefficient (Ws), coefficient of 
contents (Wz) [13,14]. Based on genetics algorithms artificial 
neural network with 10 input neurons with calculated geometrical 
coefficients was worked out (Table 3).  

Table 3.  
The parameters of the best neural network used for the 
classification of internal damages 

Input vectors Po, Ob, Wm, Wc1, Wc2, 
MinOdl, SFpoz, SFpion, Ws, Wz 

Network structure Multilayer Perceptron 10-31-5 

Training method Back Propagation/ 
Conjugate Gradient Descent 

Number of training epochs 416/50 

The weight of synaptic junctions are chosen in the way to 
minimize the network errors that means to find the minimum of 
sum square between values calculated by the network and real 
values.

The choice of optimal network learning way was made on the 
base of the following methods: 

non-linear optimisation (Lavenberg-Marquardt’s), 
radial base functions, 
errors back propagation, 
coupled gradients, 
non-linear optimisation (quasi-Newton’s). 
The best worked out artificial neural network MLP 10-31-5  

(Fig. 2) was used in he computer program, which allows the 
classification of internal damages of low alloyed chromium-
molybdenum steels on the based on images from scanning 
electron microscope [5].

2.	�Experimental procedure



149

Methodology of research

Automatic classification of the 13CrMo4-5 steel worked in creep conditions

temperature under loading and the resistance on the acting of 
chemical factors in elevated temperature, mainly on the acting of 
oxidizing gases. High costs of installations increase of working 
parameters, efficiency and reliability cause intensification in the 
area of modernization, diagnostic and durability extension of 
devices and their elements [11,12]. 

Artificial neural networks have wider application possibilities in 
the area of materials science that allow to their use in solving new 
and classical problems and matters because they allows to solve 
non-linear problems which are the main issue in that field [6-
8,10,15,16]. 

The paper shows the computer assisted method employing 
image analysis, shape coefficients, neural networks and genetic 
algorithms for the automatic classification of damages of materials 
use for power systems in creep service. 

2. Experimental procedure 
Creep resistant steels are mainly use to build turbines, 

whereas tubes, pipes, plates and fittings are the typical products 
for application in pressure vessels, boilers and piping systems. 
Material for investigation was acquired from these elements of 
power industry pressure installation long-time operating in creep 
conditions. Elements were made from the 13CrMo4-5 steel and 
their working conditions were as follows: calculation temperature 
520-560°C, real stress 35-120MPa, working time 60000-230000h. 
The chemical composition of this steel is shown in Table 1.  

Table 1. 
Chemical composition of 13CrMo4-5 steel according to the Polish 
standard PN-EN 10028-2:2005 [9] 

Mass chemical composition [wt.%] 
C Mn Si P S Cr Mo N Cu

0.08-0.18 0.4-1 <0.35 0.025 0.01 0.7-1.15 0.4-0.6 <0.012 0.3

During the creep process in the structure of materials are 
formed singular voids, chains of voids, coalescence of voids, and 
micro- macrocracks. These elements allow characterizing the 
degree of materials exhaust. 

One of the method allowing to obtain essential information 
about materials’ structure and properties is image analysis so this 
method is more commonly use in material science. Images from 
scanning electron microscope, transmission electron microscope or 
confocal microscope are saved or converted to digital format and 
allow for objective interpretation. 

To solve the problem of internal damages classifications in 
steels working in creep conditions, the metallographic structure 
images from scanning electron microscope (Fig. 1) were used and 
the following methodology was applied: 

initial processing of images (unification of format, contrast 
and resolution), 
analysis of image, 
calculation of area (S) number of pixels inside the damage, 
calculation of circumferences of chosen element (L) number of 
pixels on the damage’s circumstance, distance between 
neighbouring pixels is equal 1 (side) and 2 (diagonal), 
calculation of distances between objects, 

Feret’s diameter describing extent of damages in vertical 
Df (0°) and in horizontal Df (90°), 
Feret’s coefficient characterizing elongation of damage 
described by: 

Fig. 1. Structure of internal damages of 13CrMo4-5 steel (SEM) 

)90(
)0(

o
f

o
f

F D
D

W
,

evaluation of geometrical coefficients, which were defined 
below [13,14], 
coefficient to roundness 

L
S

kW 4 ,

Malinowska’s coefficient (Wm) 

1
2 S

L
mW ,

coefficient of circularity1 (Wc1) and circularity 2 (Wc2) 
determining circularity of damage: 

S
CW 21

L
CW 2 ,

nondimensional coefficient (Ws) for quantitative 
characterization of the damage’s shape 

SSW
L
4

2
,

Blair-Bliss coefficient (Wbb) 

i
ir

S
bbW

22
,

ir - distance of the object’s pixel from the object’s centre of 
gravity, 
i - number of object’s pixel, 

Haralick’s coefficient (Wh) 

12

2)(

i
idn

i
id

hW ,

id  - distance of the outline’s pixel from the object’s centre of 
gravity, 
i – number of outline’s pixel, 
n – number of objective’s outline pixel, 

coefficient of contents (Wz) 

S
LWZ

2

application of neural networks to degree of internal damages 
classifications, 
optimization of input vector of artificial neural network by the 
genetic algorithms, 
evaluation of computer program for internal damages’ degree 
classification.  
Quantitative values describe the features of analysed image and 

allow for converting the image into the set of digit describing it than 
the direct draw of conclusions is possible. Interpreted features can 
be divided into local (averaging of image element) and global one 
(group of image elements). The features are determined in indirect 
way on the base of the measurements made for analyzed image. 
Attributes describing element are converted to determine their 
characteristic features. Shape analysis converts the features that 
correctly determine their shapes and for elements with similar shape 
equal values are assigned. For calculation of numerical values of 
geometrical shapes are used shape’s coefficients.  

The procedure should take into account the minimization of 
measurements errors (good sample lighting, magnification, grey 
threshold ) to obtain  required boundaries separation.  

The presence of internal damages, independent of the degree 
of structure changes, decides the possibilities of the element 
exploitations. The classification of damages versus the degree of 
material exhaust consists of four main classes A, B, C, and D with 
subclasses. The classification of internal damages was simplified 
to 5 main classes to meet the needs of neural network model, the 
additional 0 classes with no internal damages of the structure is 
introduced [1,3]:  

class 0 – structure close to the initial state, 
class A –  nucleation of voids, 
class B – development of voids, 
class C – development of micro-cracks, 
class D – development of macro-cracks. 

The choice of the number and kind of artificial neural network input 
data were made by the use of genetic algorithms. For optimisation the 
mask determining which of the geometrical coefficients should be 
applied as the input of neural network were used. 

Genetic algorithms choose the best input vectors of the 
artificial neural network on the base of chains creating and 
selection. The choice is based on so called population of 
offspring. They take the main features of their parents and modify 
properties and specific problem is solved by them a little bit better 
or worse than their parents. Further multiplication is based on the 
selection of that individuals, that classify the damaged of 
materials and make the smallest errors. 

The optimisation taking into account the quality of 
classification of variable independent vector with the use of 
ordinal crossing was applied. This method allows for creating new 
individuals by the combination of their parents features and 
mutation. Table 2 shows option of genetic algorithms for which the 
smallest value of error of geometrical coefficients were obtained. 

Table 2.  
Options of genetic algorithms
Size of population 140 

Number of generation 110 

Coefficient of mutation 0.2 

Coefficient of crossing 1 

Correct classification is able thanks to use of many geometrical 
coefficients. They allow to distinguish damages with the same values 
of geometrical coefficients (classification to the same class) and with 
the different ones (classification to different class). 

In worked out initial model of artificial neural network on the 
entry there was 15 geometrical coefficients: area (S), 
circumferences (L), coefficient to roundness (Wk), Malinowska’s 
coefficient (Wm), coefficient of circularity1 (Wc1) and circularity 
2 (Wc2), maximum (MinOdl) and minimum distance (MaxOdl), 
horizontal and vertical Feret’s diameters (SFpoz, SFpion), Blair-
Bliss coefficient (Wbb), Feret’s coefficient (Wf), Haralick’s 
coefficient (Wh), nondimensional coefficient (Ws), coefficient of 
contents (Wz) [13,14]. Based on genetics algorithms artificial 
neural network with 10 input neurons with calculated geometrical 
coefficients was worked out (Table 3).  

Table 3.  
The parameters of the best neural network used for the 
classification of internal damages 

Input vectors Po, Ob, Wm, Wc1, Wc2, 
MinOdl, SFpoz, SFpion, Ws, Wz 

Network structure Multilayer Perceptron 10-31-5 

Training method Back Propagation/ 
Conjugate Gradient Descent 

Number of training epochs 416/50 

The weight of synaptic junctions are chosen in the way to 
minimize the network errors that means to find the minimum of 
sum square between values calculated by the network and real 
values.

The choice of optimal network learning way was made on the 
base of the following methods: 

non-linear optimisation (Lavenberg-Marquardt’s), 
radial base functions, 
errors back propagation, 
coupled gradients, 
non-linear optimisation (quasi-Newton’s). 
The best worked out artificial neural network MLP 10-31-5  
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Fig. 2. Schema of neural network MLP 10-31-5 

On the input of the computer program the user supplies the 
image of the structure while the program calculates the values of 
geometrical coefficients of internal damages and classifies the 
damage degree by the use of artificial neural networks (Fig. 3). 

Fig. 3. Program window for the image analysis 

3. Conclusion 
Computer classification of the internal damages can be used 

with success as forecast support tools in engineering practice. The 
accuracy and the dependability of this method vastly depends on the 
place choosing to take the metallographic structure, the proper
interpretation of observed metallographic structure and the need of 
engagement of expert with sufficient practical knowledge. 

Applying of genetic algorithms allows to increase the 
correctness of internal damages classification in steels operating in 
creep conditions by the proper choice of essential geometrical 
coefficients describing damages. 

The advantage of worked out methodology over the statistics 
methods is the possibility of correct classification even with close 
values of geometrical coefficients. 

This methodology in connection with computer program allows to 
more objective and quicker identification and classification in 
comparison with classical metallographic method. 
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