Laser beam interactions with metal matrix AlSi alloy/SiCp composites

A. Grabowski a,*, M. Nowak a, J. Śleziona b

a Institute of Physics, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
b Faculty of Materials Science and Metallurgy, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
* Corresponding author: andrzej.grabowski@polsl.pl

Received 15.09.2008; published in revised form 01.12.2008

Materials

ABSTRACT

Purpose: The purpose of the research discussed in this paper was to identify the physical processes that take place when a focused laser beam acts on a metal matrix composites reinforced with silicon carbide particles (AlSi alloy/SiCp).

Design/methodology/approach: Based on theoretical models, an analysis was carried out of the interaction between a focused laser beam and the individual components of an AlSi alloy/SiCp composite material: the reinforcement particles, SiC, and the AlSi-alloy metal matrix. Assuming effective parameters of the composite material, the energy necessary to melt a unit thickness of the composite was determined according to basic principles.

Findings: It has been shown that the time during which the melting point of the composites’ individual components is achieved varies. Modelling based on the energy and mass conservation law provides for the necessary laser beam energy to melt a unit thickness of a composite.

Research limitations/implications: In the case of cutting of a composite, however, some effects connected with the thermal field fluctuation occur, which are not explained in the model. A striated structure appears on the composite edges cut with a laser.

Practical implications: The research results enable optimization of laser machining parameters, such as laser radiation intensity or the laser beam operation time. This allows reducing the thermal overload that appears in the case of too high density of the laser energy.

Originality/value: Application of thermophysical and optical parameters of composite’s individual components yields more information about the processes that take place when scanning the metal matrix composite surface with a high intensity laser beam.

Keywords: Metal matrix composites; Heat treatment; Laser modelling; Laser treatment

1. Introduction

Aluminium matrix composites reinforced with silicon carbide particles belong to a group of modern engineering materials. Due to their mechanical, thermal and electrical properties, they are widely applied in the automotive and aircraft industries [17] as well as in electrical engineering and microelectronics. These composites are more and more frequently applied for manufacturing commonly used objects and sports equipment.

Application of composite materials in an industrial scale depends, to a large degree, on effective capacity for their machining at both the premachining level and at the finishing level [5, 15]. The presence of hard ceramic particles in composite materials makes them difficult to machine. Currently, the most effective methods of composite materials’ machining are based on
the use of diamond tools [14]. Among non-traditional methods, there are electroerosion treatment or cutting by means of a focused stream of water or air. Other non-traditional methods include laser techniques based on a focused laser beam of high intensity as a „no-contact tool” used for machining of materials. The laser methods are successfully applied in the industry for machining of metals and their alloys, semi-conductors, ceramic materials and plastic materials [6, 12, 13, 16].

The purpose of this article is to analyze the mechanisms of the laser energy radiation coupling into aluminium matrix composites reinforced with silicon carbide particles (AlSi-alloy/SiC$_p$) – the heterogeneous structural material consisting two different components. In this paper the experimental results of the optical reflectance properties of AlSi-alloy/SiC$_p$ were presented and discussed. Next the experimental data were used in mathematical models to estimate laser melt and cut depth of the AlSi-alloy/SiC$_p$. Based on model, the relationship between the cutting speed and the laser power for good quality cuts of AlSi-alloy/SiC$_p$ is presented. Also the formation of striations has received much attention because that they strongly affect the quality of laser cutting of the AlSi-alloy/SiC$_p$. The microstructure of the heat affected zone at the kerfs was studied with a scanning electron microscope. The XRD results about the crystalline phase’s of the laser beam cutting kerfs of the AlSi-alloy/SiC$_p$ composite are reported.

2. Physical formulation of the laser beam interaction with AlSi-alloy/SiC$_p$

During laser machining, the energetic efficiency in transferring energy from a focused laser beam to a material depends first of all on the optical and thermal properties of the machined material. Other factors which also determine the laser machining effectiveness are the so-called laser beam parameters, including: the laser beam radiation intensity, the beam energy distribution and the operation time. The electromagnetic radiation of a laser beam emitted from the modern industrial high-power lasers can be focused through the laser head’s optical system to sizes comparable to the laser’s electromagnetic radiation wavelength. In the case of CO$_2$ lasers of wavelength $\lambda = 10.6 \mu$m, the beam diameters are in the order of hundred’s micrometers.

In Fig. 1a typical structure of AlSi-alloy/SiC$_p$ composite material, reinforced with SiC$_p$ ceramic particles, obtained by casting process [18] is shown. It can be seen that the main phases of this AlSi-alloy matrix material are: primary α-Al dendrites (white), and eutectic mixture of Si and α-Al phase. The SiC$_p$ particles are the polycrystalline silicon carbide (mostly β-SiC$_p$ type). It is shown in Fig. 1a that there is a spread size distribution for SiC$_p$ particles, which characteristically vary for different regions in the metal matrix. Moreover, some primary Si single crystals, as well as the voids (pores) were also observed in the investigated specimens. These pores were mostly associated with the SiC$_p$ particles and located at the interface between SiC$_p$ particles and AlSi-alloy (Fig. 1b). Also the particles clusters were the place into the AlSi-alloy/SiC$_p$ where the pores are observed most frequently [7].

![Fig. 1. Optical micrographs of an AlSi-alloy metal matrix with the distribution of the vol. 15% SiC$_p$ particles (dark), obtained by casting method (a), The interfacial region of the AlSi-alloy matrix and SiC$_p$ particle (b)](image)

When comparing the SiC$_p$ particles sizes and their arrangement in the AlSi-alloy matrix in relation to the size of a focused beam of the CO$_2$ laser (Fig. 1), it should be affirmed that the laser beam during scanning of the composite surface reacts alternately with the metallic matrix of the AlSi-alloy and the SiC$_p$ reinforcement particles. In such cases, instead of using the averaged (effective) physical properties of a composite material, the individual physical properties of each of its components should be taken into consideration.

Fig. 2 shows the changes in normal optical reflectance measured along the laser cutting line for AlSi-alloy/SiC$_p$ composite surface presented in Fig. 1. It is evident that during the laser beam scanning there is a change of around 15% in the amplitude of the optical reflectance, hence the local value of the absorptivity of laser radiation changes.

From the physical point of view the main components of AlSi alloy/SiC$_p$ composite material: the SiC$_p$ particles and AlSi alloy metal matrix have different absorption values of electromagnetic laser radiation [20].

The energies of photons emitted by CO$_2$ and Nd:YAG lasers as well as by a high-power diode laser (HPDL) are much lower than the energy of the optical break for silicon carbide, which for a material of the β-SiC$_p$ type amounts $E_g \approx 3.2$eV. In the case of laser beam photons acting on SiC, there will be no highly-efficient, in terms of energy, interband absorption of photons in the material. Absorption in SiC of high-intensity laser radiation ($I_0 > 1$ kW/cm^2) of photons’ energy $h\nu < E_g$ will take place mostly...
via „multiphoton interband transition”. Such absorption will cause thermal generation of free charge carriers in SiC, which carriers will next induce additional absorption of laser radiation.

For the calculations with equation (1), the average temperature independent thermophysical constants of the conductivity, density and specific heat values for SiCp and for AlSi-alloy components are used.

Obtained from equation 1, the time evolution of the surface temperature variation rate for AlSi-alloy and SiC materials were plotted in Fig. 3.

\[T(t) = T_0 - \frac{I_0 A}{K \alpha} \left[2 \alpha \frac{at}{\pi} + \exp(\alpha^2 at) \text{erfc}(\alpha \sqrt{at}) \right] - 1 \] \hspace{1cm} (1)

where:
- \(T_0 \) – is the ambient temperature,
- \(I_0 \) – the laser power density at the material surface (W/m²),
- \(\alpha \) – the absorption coefficient (1/m),
- \(A \) – absorption of the component at perpendicular incidence, \(K \) – the thermal conductivity, \(a \) – thermal diffusivity \((a=K/c_p \rho) \), \(c_p \) – specific heat, \(\rho \) – mass density, \(t \) – the time of laser interaction with the component.

In Fig. 3 it could be seen the exponential growth of the surfaces temperature for both components at a longs time of laser beam interaction. The melting temperature \(T_{\text{m}} = 850 \text{K} \) for AlSi-alloy material could be reached after 5 μs time whereas for SiCp particle the sublimation temperature \(T_{\text{m}} = 3103 \text{K} \), after \(t = 12 \mu s \). During that short time as the surfaces reached the melting temperature the laser energy is converted to heat and next started to diffuse into the deep of material. The calculated diffusion lengths \(\delta = 2\sqrt{Kc_p t} \) of the heat are equal \(\delta_{\text{AlSi-alloy}} = 32 \mu m \) and \(\delta_{\text{SiC}} = 58 \mu m \), these values are large than appropriate absorption depth of the CO₂ laser radiation.

These results indicate that the melting time of the AlSi-alloy metal matrix is almost two times shorter than for SiCp particle at the same laser radiation intensity.

When a laser beam is irradiated on AlSi-alloy/SiCp material surface, a portion of laser energy is absorbed and next conducted into the interior of the material. If the absorbed energy is high enough, material surface will melt and the melting front will propagate into the work piece. Boiling and vaporization can also occur at the free surface of the melt. For AlSi-alloy/SiCp the melting heat of the components is much smaller than their evaporation heat. Therefore, a more economical method, which does not require high laser power, is gas-assisted laser cutting, in which the composite material is locally (within the spot of focused laser radiation) heated to the melting point (particularly the low-melting AlSi-alloy matrix) and next is entrained due to intense blowing of the assisted gas jet [12].

In order to determine the laser beam energy necessary to melt a unit thickness of the composite material, a theoretical model was utilized in the study, based on the energy conservation law and the mass flux continuity principle.
The overall energy and mass balance equations in accordance with the geometry of laser cutting setup presented in Fig. 4, for the laser beam radiation takes the form [9]:

\[E_u = E_p + E_v + E_{loss} \]

where:
- \(E_p \) – laser beam energy absorbed by the AlSi-alloy/SiC_p material,
- \(E_v \) – the energy involved in the heating, boiling and the phase change,
- \(E_{loss} \) – energy lost due to heat conduction from the melted to the surround solid region AlSi-alloy/SiC_p for conduction.

\[v_b w_m d_m = (v_m + v_b)(w_m - w_k) d_m + f_w w_m d_m \]

where:
- \(v_b \) – the laser beam scanning velocity,
- \(v_m \) – the average velocity of liquid composite material in the kerf,
- \(f_w \) – a fraction of the total amount of composite material melted by the laser beam,
- \(w_k \) – the kerf width (close to the laser beam diameter),
- \(w_m - w_k \) – the difference is equal the thickness of thermal layer close to heat affected zone (HAZ) size.

Fig. 4. Geometry of laser cutting model used in this study

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Units</th>
<th>Values of physical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (300 K)</td>
<td>kg·m(^{-3})</td>
<td>2650 3210 2838</td>
</tr>
<tr>
<td>(T_m)</td>
<td>K</td>
<td>850 2980 823</td>
</tr>
<tr>
<td>(c_p) (300 K)</td>
<td>J·kg(^{-1})·K(^{-1})</td>
<td>913 690 896</td>
</tr>
<tr>
<td>(k) (300 K)</td>
<td>W·m(^{-1})·K(^{-1})</td>
<td>136.2 244 97.9</td>
</tr>
<tr>
<td>(L_m)</td>
<td>kJ·kg(^{-1})</td>
<td>390 Si 324</td>
</tr>
<tr>
<td>(L_b)</td>
<td>kJ·kg(^{-1})</td>
<td>10.7·10(^3) Si 10.7·10(^3)</td>
</tr>
<tr>
<td>(A) (10.6(\mu)m)</td>
<td>–</td>
<td>0.06 0.25 0.17</td>
</tr>
</tbody>
</table>

Laser cutting experiments were performed using CO\(_2\) lasers: TLF4000 (Trumpf), operating in pulsed mode and a continuous Spectra-Physics 820. A beam delivery system with 127mm ZnSe lens was used. The diameter of the focused laser beam was 0.25mm and the focus position was the upper surface of the AlSi-alloy/SiC\(_p\) samples. The laser cutting was performed with assist inert gas (nitrogen) at gas pressures ranging from 10-16 bar. The coaxial assist gas used for cutting was delivered to the cut point via copper cutting nozzle. The parameters of the cutting nozzle were: nozzle orifice size \(\phi = 1.5\) mm, the stand off distance (0.8-1.2) mm.

The shape of the laser cutting kerfs and the microstructural characterization studies of the cut edge were conducted on the AlSi-alloy/SiC\(_p\) in order to investigate the morphology of the HAZ region and to evaluate the distribution of the SiC particles. These studies were carried out primarily using a optical microscope (Olympus GX71) and next scanning electron microscope (Hitachi-S3400N). The geometrical characteristics of the surface roughness laser cut edge were measured with contact instruments Surtronic3+ Taylor-Hobson.

Fig. 5 presents the theoretical dependencies, calculated from equations 2 and 3, of the laser beam power falling to a unit thickness of a melted composite material (P/d) depending on the laser cutting speed \(V_b \). The calculations were made for different laser radiation absorption values from the range of 0.17-0.3.

The obtained theoretical dependencies indicate a linear dependence between the P/d and \(V_b \) parameters for the investigated composite material. The presented results show that the laser radiation absorption value has a very strong influence on the course of the P/d vs. \(V_b \) dependence. An increase in absorption of 0.1 leads to a considerable decrease of the P/d quotient value, which is particularly visible at high laser beam speeds, \(V_b \).

The experimental results obtained for laser cutting of the composite were put on the theoretical results presented in Fig. 5. The best compliance of the model was obtained for the assumed constant absorption value \(\Lambda = 0.2 \). This value should be considered effective for the whole investigated composite material. The observed compliance of the experiment with the theoretical model is particularly good for high speeds of the laser beam. The obtained theoretical results indicate a possibility of optimizing the laser machining parameters for the AlSi-SiC composite material.
the nozzle shape as well as the pressure of the assisted gas, 2 a function of the cutting speed, for different volume fraction of SiC$_p$ particles and constant CO$_2$ laser beam power $P = 4$ kW

In the gas-assisted laser cutting technique laser machining parameters are also important as the optical and thermo-physical properties of material. The are first of all the average laser beam power and next:

- frequency and duty cycle,
- velocity of the cutting process,
- the nozzle shape as well as the pressure of the assisted gas,
- distance from bottom of nozzle tip to the top of the material (stand-off distance),
- the focal position of the laser beam.

For the experimental verification of the influence of the machining parameters on the laser cut quality, the cuttings have been carried out under the same parameters laser cutting for AlSi-alloy/SiC$_p$ composite as well as for AlSi-alloy metal matrix comparative work piece. The measured surface roughness R_s (root-mean-square average) of the middle part of the AlSi-alloy/SiC$_p$ 15 vol. % cut surfaces was $R_s = (17.1 \pm 3.4)$ μm, and for AlSi-alloy the $R_s = (2.9 \pm 0.8)$ μm. It is evident to laser cutting that the presence of 15 vol. % SiC$_p$ particles changes the dynamic of the cutting front, consequently the R_s increase.

Obviously the surface roughness is strongly related to striation frequency [4]. The microstructure of the cut kerf was studied with a scanning electron microscope (SEM) using secondary as well as backscattered electron for image generation. Fig. 7 shows a typical morphology of a laser cut kerf of the thick AlSi-alloy/SiC$_p$ composite materials with supersonic jet of nitrogen used as an assist gas [11]. In Fig. 7 the three distinct zones are seen. In Zone I the keyhole is initiated, the erosion front is created, and a very thin film of molten AlSi-alloy/SiC$_p$ continuously produced from the solid substrate, is constantly blown down (to Zone II) by the high pressure of the assist gas. There is no regular striations observed in this zone and the heat affected zone (HAZ) is no thicker than 40μm.

In case of prediction of the theoretical models as the SiC$_p$ particle volume increases in the AlSi-alloy/SiC$_p$ composite materials, the model predicts that the largest cutting thickness can be obtained. We can see it in Fig. 6. The model gives such prediction which is related to a slightly greater absorptivity value and the lower heat conductivity of the AlSi-alloy/SiC$_p$ composite in comparison to AlSi-alloy [10].
with the cutting front angle. At the angle of $\theta^\circ \approx 5^\circ$ the maximum Fresnel absorption, occur for AlSi-alloy/SiC\textsubscript{p} and circular polarized CO\textsubscript{2} laser radiation [11]. It is interesting that similar striations image for AlSi-alloy/SiC\textsubscript{p} composite was observed for wide range of CO\textsubscript{2} laser pulse repetition rates (500-10 000) Hz at constant cutting speed velocity and laser beam power.

The average wavelength λ of the periodic structure that appeared on the cut kerf in Zone II (Fig. 7) was experimentally determined as $\lambda = (0.77 \pm 0.02)$ mm. The λ value is close to thickness of the molten layer (w_{m}), whereas $s/\Delta t$ physically represents the rate of change of the molten layer in the interval time Δt and can be given approximately by the differences V_{in} V_{b}.

By knowing the laser cutting speed ($v_b = 1$ m/min) the temporal frequency of these cutting parameters was determined as a 22Hz. The striations frequency is a characteristic element of a given metallic material and laser parameters process; they are the splitting image of the superposition of successive melting isotherms generated by the laser beam. The striation frequency value observed for AlSi-alloy/SiC\textsubscript{p} composite could be low compared to the frequencies observed during cutting the aluminium alloy matrix as well as other metallic materials where frequencies are one order higher [19].

The zone III starts at the bottom kerf the AlSi-alloy/SiC\textsubscript{p} composite work piece. The striation transition from Zone II to III (Fig. 7) creates the „double slope”. The angles of straight lines change from $\theta^\circ = 5^\circ$ to $\phi = 15^\circ$. This phenomenon, observed also by Duan [8], can be explained by the significant change in melt film thickness in this part of kerf. Because of the high surface tension, the gas jet cannot remove completely all the melt so is covered in rapidly solidified melt (dross) along the bottom edge.

There have been numerous research efforts in order to understand the formation of striations on the kerf. Arata et al. and first of all Schuwocker [4, 8, 19] suggested that the fluctuations in absorbed laser power can induce both temperature and molten layer thickness oscillations, thus causing striations to occur.

In the case of heterogeneous materials such as AlSi-alloy/SiC\textsubscript{p}, the changes in the optical absorptivity are natural (Fig. 2). Consequently the dynamic changes in laser energy absorption by the AlSi-alloy/SiC\textsubscript{p} surface during laser scanning lead straight to the layer thickness oscillations.

The microstructural characteristic of laser cut edge in the cross sectioned view are shown in Fig. 8. Two zones with distinct microstructural features can be clearly observed in this figure. The laser alloyed zone the significantly smaller size of the crystal of the AlSi-alloy matrix compared to non-treated material was observed. This effect was also observed in other laser material treatments [2]. As indicated in Fig. 8 the depth of above two zones could be easily measured under the microscope. The variation in depth along the kerf’s eight millimetres thick AlSi-alloy/SiC\textsubscript{p} specimen determined is illustrated in Fig. 8.

The HAZ depths presented in Fig. 8 is correlated with the zones observed in Fig. 7. At the top part of the kerf, the SiC\textsubscript{p} particles were not melted during the laser cutting. The full size SiC\textsubscript{p} particles are close to the laser cutting surface. At the lower part of the AlSi-alloy/SiC\textsubscript{p} kerf, the extent of the HAZ increases. The maximum value of the HAZ was observed at the bottom kerf of the AlSi-alloy/SiC\textsubscript{p} composite materials. Interesting interpretation of the micro and macroscopic structure that could be used to characterize the observed HAZ Zones in AlSi-alloy/SiC\textsubscript{p} composite was described in work [2].

It can be seen in Fig. 8 that the HAZ depth decreases from 35μm to 450μm. The energy balance and the Stefan conditions at the solid-liquid interface can determine the characteristic temperature of the melt T_a [9]:

$$T_a = \frac{S_{\text{HAZ}} \rho \alpha_v}{2K} v_b + \frac{S_{\text{HAZ}} T_m - T_a}{2(K_\alpha)},$$

where:

S_{HAZ} – the average thickness of the recast layer in the kerf,

L_m – latent heat of melting.

The calculated temperature T_a in Zone I and II (Fig. 6) is almost constant and equals $T_a \approx 968K$. For Zone III the temperature T_a increases above $1000K$. The increase in T_a calculated from equation 4 can be explained by the fact that the molten layer thickness S_{HAZ} becomes bigger in size in Zone III. Which occurs when molten composite move in the through-thickness direction of the composite (Z direction, Fig. 4), molten composite material accumulates at the bottom of the base material and subsequently is cooled.
Laser beam interactions with metal matrix AlSi alloy/SiC\textsubscript{p} composites

To obtain information about the crystalline phase's composition and the elements distribution at the laser cut kerf of the AlSi-alloy/SiC\textsubscript{p} composites, the X-ray diffractometry (XRD) and X-ray energy dispersive spectroscopy (EDS/XR) analysis was undertaken. The obtained X-ray diffraction spectra for different parts of the laser cut kerf for wide range of laser beam energy density (up to $P/vR = 2.5 \times 10^9$, J/m3) do not show that new phases to be formed in the AlSi-alloy/SiC\textsubscript{p} composite materials laser cut kerf. The same changes in X-ray diffraction spectra in comparison with not laser treated area were observed only for AlSi-alloy/SiC\textsubscript{p} material derived from middle part of the cutting grow. This part of material absorbed the most of laser energy and was melted and next blowing by the assisted gas outside the cut grove. The comparison of X-ray diffraction spectra's showed at Fig. 9 indicated that the diffraction amplitude peaks of crystalline phase SiC\textsubscript{p} are lower, what confirm that some polycrystalline SiC\textsubscript{p} particles decomposed.

![X-ray diffraction spectra](image)

Fig. 9. X-ray diffraction spectra of AlSi alloy/SiC\textsubscript{p} 15 vol. % composites materials: after laser processing (a), untreated laser (b)

Decomposition of the SiC\textsubscript{p} particles is connected with the high heat input associated with laser cutting. In the kerf zone SiC\textsubscript{p} particle melts and provides C for reaction with Al to form Al\textsubscript{4}C\textsubscript{3} based on the reaction as follows [3, 21]:

$$4\text{Al} + 3\text{SiC} \rightarrow \text{Al}_{4}\text{C}_3 + 3\text{Si}$$

(5)

The absent of aluminium silicon carbides phases at the laser cut kerfs (Fig. 7) indicated that interfacial reaction did not take place during laser cutting [3]. This must be due to the short laser beam/composite material interaction time and second the high levels of silicon (AlSi-alloy are eutectic composition with 12.6 wt. % Si content) in the AlSi-alloy/SiC\textsubscript{p} composite, metal matrix reduce the tendency to form aluminium silicon carbides.

Fig. 9 shows that with additional phases only SiO\textsubscript{2} and Al\textsubscript{2}Si\textsubscript{C}\textsubscript{p} was observed in AlSi-alloy/SiC\textsubscript{p} composites after processing with laser beam radiation 10^3 (W/cm2).

4. Conclusions

A description of the interaction between a focused laser beam and a composite material is a complex issue since the shifting laser beam reacts alternately with the composite components, the latter being materials of different thermophysical and optical properties. The reason for this is a different degree and time of melting the composite components.

As the research has shown, for constant laser beam radiation intensity, the SiC\textsubscript{p} particles' melting time is almost twice longer than for the composite's metallic matrix. This implies the capacity for selecting such laser machining parameters that the laser beam would melt (damage) the SiC reinforcement particles in a composite to a small degree only. As a result, higher quality of the laser machined composite surfaces would be ensured. The properly selected laser radiation intensity induces lower thermal overload of the composite, which has a direct influence on the dynamics of the chemical reactions that take place in the heat affected zone of the laser machined composite. At too high laser beam energy, an Al\textsubscript{4}C\textsubscript{3} compound is formed in that zone, which reduced the quality of the laser machined surfaces.

The applied theoretical model based on the principal laws of energy and mass conservation allows correct forecasting of the degree to which the composite material will melt when using a laser beam of predetermined power.

As results from the carried out experiments of laser cutting of composite materials, the observed instability of the composite’s cutting front resulting from changes in the laser radiation absorption, translates into the observed roughness of composite kerfs.

Additional phenomena that occur during laser cutting of a composite material are the consequence of movement of the melted layer of the liquid composite in the kerf. The liquid layer of melted composite, formed on the front and edges of the kerf, is blown out by a nitrogen stream. The different values of the layer’s thickness and its temperature induce changes in the viscosity coefficient as well as in the surface tension of the layer. In consequence, increased roughness of laser-cut composite’s edges is observed.

The zones of regular striations give information about the dynamic process of laser cutting and could be a method of characterize very difficult process of laser cutting composite material with assist gas. The formation of striations affect on the quality of laser cutting of composite.

Acknowledgements

Dr. A. Grabowski, gratefully acknowledges Wawrzaszek Company, Special Vehicles Engineering Digital Sheet Metal Treatment from Bielsko-Biała, Poland. The authors wish to thank Dr Maria Sozanska and Dr Grzegorz Moskal for their SEM and XRD analysis.

References

