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ABSTRACT
Purpose: The subject of this paper is to study the thermoelastic behavior of thick functionally graded hollow 
sphere under thermal and mechanical loads. The mechanical and thermal properties of FG sphere are assumed 
to be functions of radial position.
Design/methodology/approach: In present study, two methods are used to estimate the effective mechanical 
properties of FG sphere. One of the simplest methods in estimation of the effective mechanical and thermal 
properties of a mixture of two constituent materials is the Rule of Mixture (R-M) scheme. Another scheme 
for estimating the mechanical properties is due to the work of Mori-Tanaka. When the mechanical properties 
of FG sphere are estimated by using the Mori-Tanaka scheme, thermal material properties of FG body may be 
determined utilizing the R-M or the other methods which will be discussed as follows.
Findings: Results for the temperature, radial displacement, radial stress and hoop stress fields through the 
geometry of the sphere are give. The figures reveal that some minor difference may be obtained for two schemes 
and the difference between the results for displacement distribution is larger than difference of temperature and 
stress distributions.
Practical implications: The thermal material properties are obtained utilizing the Hatta-Taya and Rosen-
Hashin relations. Also, the mechanical properties are estimated using the Mori-Tanaka scheme. In addition to 
the methods of approximation of material properties cited above, the rule of mixture scheme for determination 
of thermal and mechanical properties is also considered and results of these two schemes are compared for 
two cases of material composition through the geometry of FG sphere. The FG sphere is assumed to be 
symmetrically loaded and one-dimensional steady-state analysis of isotropic linear thermoelastic FG sphere 
under combined thermal and mechanical loads is investigated. Solution of the heat conduction equation and the 
Navier equation are obtained by using the Galerkin finite element method and by generating 100 elements along 
the radial direction of FG sphere.
Originality/value: This paper presents the FEM analysis of a functionally graded thick hollow sphere which its 
thermal and mechanical material properties only depend on the radial position.
Keywords: Functionally graded material; Hollow sphere; Thermal stress
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1. Introduction 

Functionally graded materials (FGMs) are new of branch of 
materials which can be used for various conditions such as 
thermal and mechanical load applications. The FGMs are 
microscopically nonhomogeneous materials where the 
composition of the constituents of materials is changed 
continuously. The mechanical benefits obtained by a material 
gradient may be significant, as can be seen by the excellent 
structure performance of some of these materials. Hence, there 
has been considerable interest in recent years in the application of 
such materials in areas such as lightweight armors, high 
temperature applications and industrial fields such as electronics, 
biomaterials and so on [1]. 

Among some articles which dealt with the subject of stress 
analysis of functionally graded structures the following papers 
may be referenced. Kwon et al. [2] studied the case of a graded 
sphere under non-uniform temperature variations by using a 
numerical integration procedure. Obata and Noda [3] used a 
perturbation approach to study the thermal stresses in functionally 
graded hollow sphere that was uniformly heated. Lutz and 
Zimmerman [4] solved the problem of uniform heating of 
spherical body whose elastic modulus and thermal expansion 
coefficients each vary linearly with radial position. Eslami et al. 
[5] analytically solved the governing equation of a functionally 
graded spherical vessel and investigated the temperature, 
displacement and relevant thermal stresses due to the thermal and 
mechanical loads 

Wang and Mai [6] considered the finite element method to 
analyze one-dimensional transient heat conduction problems. 
Durodola and Adlington[7] presented the use of numerical 
methods to assess the effect of various forms of gradation of 
material properties to control deformation and stresses in rotating 
axisymmetric components such as disks and rotors. Nadeau and 
Ferrari [8] presented a one-dimensional thermal stress analysis of 
a transversely isotropic layer that was inhomogeneous along its 
thickness. Using the infinitesimal theory of elasticity, Naki and 
Murat [9] obtained close-form solution for stresses and 
displacements in functionally graded cylindrical and spherical 
vessels subjected to internal pressure. Fukui et al. [10] studied the 
problem of uniform heating of a radial inhomogeneous thick-
walled cylinder. 

In this paper, a thick hollow sphere made of functionally 
graded materials under one-dimensional steady-state temperature 
distribution with general type of boundary conditions (thermal 
and mechanical) on inside and outside of the sphere is considered. 
The thermal properties only depend on the radial position and are 
obtain utilizing the Hatta-Taya [11] and Rosen-Hashin[12]  
relations.  Also, the mechanical properties of sphere are functions 
of position and are assumed to obey the Mori-Tanaka [13] 
relation. The results of using the power law equation for the 
material distribution and the methods used in present paper in 
determining of the materials properties are compared. Solution of 
the heat conduction equation and the Navier equation are obtained 
by using the Galerkin finite element method. Results for the 
temperature, radial displacement, radial stress and hoop stress 
fields through the geometry of the sphere are give. 

2 Derivation of equations 

2.1   Heat conduction problem 

Consider a ceramic-metal FG sphere where its material 
composition is graded along the radial direction. The inner surface 
of the sphere which is ceramic rich side is exposed to symmetric 
thermal and mechanical loads. The heat conduction equation for 
one-dimensional steady-state problem in spherical coordinates is 
given as 
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where T=T(r) is the temperature change, k=k(r) is the thermal 
conductivity, and r is the radial position variable. In general form, 
the applied thermal boundary conditions due to the heat 
convection, heat flux and or prescribed temperature at the inner 
and outer surfaces of the sphere are given as 
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In which Aij are thermal conduction coefficient k or 
convection coefficient h, depends on the type of boundary 
conditions which may be considered. The terms C1 and C2 are 
known constants on the inside and outside radii of the sphere.  

.

2.2  Navier equation 

The equilibrium equation of a symmetrically loaded 
functionally graded sphere in radial direction, ignoring the body 
force, is 
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The stress-strain relations for isotropic, linear thermoelastic 
functionally graded materials are given as follows 
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where ij  and 
),,( rjiij  are the components of 

stress and strain tensors, e is the first invariant of the strain tensor 

defined as 
2rre

, )23( is the 
effective stress-temperature modulus of FG sphere, and T is the 
temperature change which should be obtained from heat 
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conduction equation. Also, terms  and  are the effective 
Lam`e constants and  is the effective linear thermal expansion 
coefficient. The kinematical strain-displacement relations are 

r
u
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 (5) 

Substitution of strain components into the stress-strain 
equations of (4) and inserting the resulting relations in 
equilibrium equation of (3) lead to the Navier equations as 
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Where 
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3   Estimating the effective thermal and 
mechanical properties of fg sphere

In present study, two methods are used to estimate the 
effective mechanical properties of FG sphere. One of the simplest 
methods in estimation of the effective mechanical and thermal 
properties of a mixture of two constituent materials is the Rule of 
Mixture (R-M) scheme. Another scheme for estimating the 
mechanical properties is due to the work of Mori-Tanaka [13]. 
When the mechanical properties of FG sphere are estimated by 
using the Mori-Tanaka scheme, thermal material properties of FG 
body may be determined utilizing the R-M or the other methods 
which will be discussed as follows. 

3.1   Rule of mixture (R-M) scheme 

In rule of mixture scheme, the fractions of mixtures are only 
considered and the forces between the phases are not included in 
consideration. The R-M scheme states that the material properties 
of a matrix phase and particulate phase in a mixture can be 
determined by application of only the effect of volume fraction of 
each phase on material properties. Thus 

2211 VPVPP   (8) 
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where P is the effective properties of FG body, the subscript 1 
denotes the matrix phase properties and the subscript 2 indicates 

the materials properties of particulate phase which is added to the 
matrix phase. Also, terms a and b are the inner and outer radii of 

FG sphere, 1V and 2V  are volume fraction of material 

constituents of FG sphere which obey the relation 121 VV , and 
n is the power index which by proper selection of its value a 
desired structure with suitable distribution of stresses or thermal 

field may be obtained. It should be noted that Lam`e constants 

and , thermal conductivity, k, and linear thermal expansion 
may be determined by using the R-M scheme while the other 
material properties of isotropic linear elastic FG sphere can be 
calculated by using the proper relations between the material 
properties. In this case, the Poisson's ration is considered to be 
constant.

3.2  Mori-Tanaka (M-T) scheme 

The Mori–Tanaka scheme is applicable for estimation of 
effective mechanical properties of a graded microstructure which 
has a continuous matrix and a randomly distributed particulate 
phase. This scheme considers the forces between the matrix and 
particulate phases and takes the interaction of the elastic fields 
among neighboring inclusions into the account [13, 14]. It is 
assumed that the matrix phase, denoted by the subscript 1, is 
reinforced by spherical particulates, denoted by the subscript 2. In 
M-T scheme, the Bulk modulus and shear modulus are estimated 
by 
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where 1K , 2K , are the bulk modulus of the constituents of FG 

body, 1 , 2  are  the shear modulus of constituent materials of 
FG body and 111111 26/89 KKf .

3.3   Estimation of thermal properties of FG 
sphere

As noted above, the thermal properties of FG body may be 
determined by using the R-M scheme. The other alternative 
method to estimate these material properties is given in the 
following. The thermal conductivity of the functionally graded 
sphere can be estimated utilizing the Hatta-Taya relation as [6] 
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where k1 and k2 are thermal conduction coefficient of the sphere 
material constituents. Also, the linear thermal expansion,  of a two 
phase domain may be  determined by Rosen-Hashin equation as 
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in which the material properties given by subscript 1 and 2 are the 
material properties of matrix and particulate phases and the bulk 
modulus appeared in foregoing relation should be obtained by 
using Eq. (10). 

4  Finite element implementation

In order to solve and analyze the functionally graded spherical 
pressure vessels, the governing equations may be solved 
analytically or numerically. Since the analytical solution of the 
difference equations of FG sphere is complicated to achieve, the 
numerical procedures are most considered by investigators. 
Among the numerical methods, the finite difference, finite 
element, and meshless methods are most interested and utilized 
for the analysis of structures. In this paper, the finite element 
method for its applicability and convergence is used to obtain the 
distribution of temperature, displacement and stress through the 
geometry of the FG sphere. To this end, the geometry of the 
sphere is divided into some discretized elements along the radial 
direction. The temperature and displacement in a base element 
can be approximated by 
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in which terms iN are the shape functions and iU , iT  are, 
respectively, the nodal value of displacement and temperature, 
and l is the number of nodes per element. Now, the formal 
Galerkin finite element method may be applied to the governing 
equations (1) and (6) to find the nodal unknown temperature and 
displacement values. Thus 
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Here, 
)(eV  is the volume of base element. Application of the 

weak form to the first term of Eq. (14) and the first term, first 
term of second bracket and the last term of Eq. (15) leads to the 
following form of governing equations 
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where fr  and lr  are, respectively,  the radial position of the first 
and last nodes of base element, respectively. Also, terms 

dr
dTkqr

 and rrrr et ˆ  are the heat flux and traction on the 

boundaries of the base element, respectively, and rê  is the 
outward unit normal to the boundary of the base element. To 
obtain the final form of the finite element formulation, the 
displacement and temperature should be replaced by the 
approximating Eqs. (13). Upon substitution of Eqs. (13) into Eqs. 
(14) and (15), the matrix form of the finite element formulation is 
obtained as 
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where the submatrices [ 11K ], [ 12K ], [ 21K ], [ 22K ], { F}, and {Q} 
are as follows 
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5 Numerical results 
In this section, the finite element formulation is implemented 

for the analysis of FG sphere under combined thermal and 

4.  Finite element 
implementation

5.  Numerical results
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mechanical loads. To investigate the accuracy of the results, a 
comparison between the results of FEM code developed in 
present work and those of analytical solution given in the 
literature is accomplished. To this end, 100 elements are 
generated along the radial direction of the FG sphere and the 
results for the case that the material properties obey a simple 
power law form function given in Ref. [5] are compared. The 
material properties of FG sphere in Ref. [5], where an analytical 
solution of the governing equations is presented, are assumed to 
be as follows 

321
000 ;; nnn rkkrrEE  (25) 

where 0, EE  are the elastic modulus of the FG sphere and base 

constituent, 0, are the linear thermal expansion coefficient, 

and 0, kk  are the thermal conductivity of the FG sphere and 
base constituent, respectively, and the Poisson’s ratio is assumed 

to be constant. Also, terms 21,nn  and 3n are the power law 
indices which determines the material distributions through the 
geometry of FG sphere.  

Fig. 1. Dimensionless temperature distribution for two values of 
power law indices 

It should be noted that to obtain the other material properties 
of isotropic, linear thermoelastic functionally graded materials the 
following relations may be used 
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The thermal boundary conditions are assumed to be 

prescribed temperature change at the inner and outer surfaces. An 
FG sphere of inner and outer radii of a=1m and b=1.2m which 
temperature change at its inner surface is considered to be 
T(a)=10 C0

, and the outer surface temperature is assumed to be 
constant is under investigation. Also, the sphere is supposed to be 

under internal pressure of 50 MPa while is traction free at its outer 
surface. The material properties at the inner radius of the sphere 
are assumed to be 

GPaE 2000 , K/)10(2.1 6
0

and the power law indices are considered to be the same, i.e. 
nnnn 321 . In the following, the temperature, 

displacement and stresses are normalized by the prescribed 
temperature at the inner surface, the inner radius of the sphere, 
and the internal pressure load at the inner surface of the sphere, 
respectively. 

Fig. 2. Dimensionless displacement distribution for two values of 
power law indices 

In Figs. 1 and 2, the temperature and displacement 
distribution results of analytical and FEM code developed in 
present work are compared for two values of power law indices, 

i.e. 2n   and 2n . As may be seen from the figures, the 
plots are well compared and a close result is obtained. 

Now, consider the same FG sphere which its material 
properties are assumed to follow the rule of mixture (R-M) or 
Mori-Tanaka (M-T) schemes. In this case, the aluminum ( Al )
and alumina ( 32OAl ) are considered as the material constituents of 
FG sphere where the inner and outer surfaces of the sphere are 
supposed to be fully ceramic and fully metal, respectively. The 
thermal and mechanical properties of the metal and ceramic 
constituents are given as 
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As indicated in figures, the effect of material composition on 

temperature, displacement and stresses is shown and the results 
for two schemes of estimation of material properties of FG sphere 
are presented. It may be seen from Fig. 3 that the M-T along with 
the scheme Hatta-Taya and Rosen-Hashin relations predicts larger 
values for temperature distribution, especially for the regions near 
the inner surface of the sphere, i.e. ceramic rich side. Also, it can 
be observed from Fig. 3 that by increasing the power law index 
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the temperatures through the geometry of the sphere are 
increased. The reason is that with increase of power law index the 
amount of ceramic constituent increased and results in larger 
absorption of thermal energy. 

Fig. 3. Dimensionless temperature distribution for two values of 
power law index and R-M and M-T schemes 

Figure 4 depicts that the difference between the results of M-
T and R-T schemes for the displacement distribution are 
considerably large when the combined thermal and mechanical 
loads are applied to the FG sphere. However increasing the power 
law index leads to increase of absorption of thermal energy, it can 
be seen in Fig. 4 that due to increase of amount of ceramic 
constituent, smaller values for the displacement distribution is 
obtained. The reason is that the elastic modulus of FG sphere is 
increased when the value of power law index in increased.   

Fig. 4. Dimensionless displacement distribution for two values of 
power law index and R-M and M-T schemes 

It can be inferred from the results shown in Fig. 5 that while 
some differences are detected for temperature and displacement 
distributions, there are only minor differences for the radial stress 
distribution. Also, Fig. 5 shows that with increase of power law 
index larger values, due to the higher values for the elastic 
modulus,  can be obtained for the radial stress. 

Fig. 5. Dimensionless radial  stress distribution for two values of 
power law index and R-M and M-T schemes 

Fig. 6. Dimensionless circumferential  stress distribution for two 
values of power law index and R-M and M-T schemes 

Fig. 7. Dimensionless von Mises stress distribution for two values 
of power law index and R-M  and M-T schemes 



Research paper428

Journal of Achievements in Materials and Manufacturing Engineering

F. Alavi, D. Karimi, A. Bagri

Volume 31 Issue 2 December 2008

Since the thermal field more dominates the circumferential 
stress than elastic field, it can be seen from Fig. 6 that the 
difference between the circumferential stresses predicted by 
two schemes is larger in the vicinity of inner surface of the 
sphere resulting from the larger difference of temperature 
distribution at the inner regions. An interesting phenomena 
which can be observed in Fig. 6 is that, while the larger values 
of power law index predict smaller values for the 
circumferential stress, these stresses increases with the larger 
values of power law index at the vicinity of outer surface of 
the FG sphere. 

This phenomena can also be observed in Fig. 7 where the 
distribution of von Mises stress is plotted. 

7 Conclusions 
This paper presents the FEM analysis of a functionally 

graded thick hollow sphere which its thermal and mechanical 
material properties only depend on the radial position. The 
thermal material properties are obtained utilizing the Hatta-Taya 
and Rosen-Hashin relations. Also, the mechanical properties are 
estimated using the Mori-Tanaka scheme. In addition to the 
methods of approximation of material properties cited above, 
the rule of mixture scheme for determination of thermal and 
mechanical properties is also considered and results of these two 
schemes are compared for two cases of material composition 
through the geometry of FG sphere. The FG sphere is assumed 
to be symmetrically loaded and one-dimensional steady-state 
analysis of isotropic linear thermoelastic FG sphere under 
combined thermal and mechanical loads is investigated. 
Solution of the heat conduction equation and the Navier 
equation are obtained by using the Galerkin finite element 
method and by generating 100 elements along the radial 
direction of FG sphere. Results for the temperature, radial 
displacement, radial stress and hoop stress fields through the 
geometry of the sphere are give. The figures reveal that some 
minor difference may be obtained for two schemes and the 
difference between the results for displacement distribution is 
larger than difference of temperature and stress distributions. 
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