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Manufacturing and processing

ABSTRACT
Purpose: This paper explores the capabilities of genetic algorithms in handling optimization of the critical 
issues mentioned above for the purpose of manufacturing process planning in reconfigurable manufacturing 
activities. Two modified genetic algorithms are devised and employed to provide the best approximate process 
planning solution. Modifications included adapting genetic operators to the problem specific knowledge and 
implementing application specific heuristics to enhance the search efficiency.
Design/methodology/approach: The genetic algorithm methodology implements a genetic algorithm 
that is augmented by application specific heuristics in order to guide the search for an optimal solution. 
The case study is based on the manufacturing system. Raw materials enter the system through an input stage 
and exit the system through an output stage. The system is composed of sixteen (16) processing modules 
that are arranged in four processing stages.
Findings: The results indicate that the two genetic algorithms are able to converge to optimal solutions 
in reasonable time. A computational study shows that improved solutions can be obtained by implementing 
a genetic algorithm with an extended diversity control mechanism.
Research limitations/implications: This paper has examined the issues of MPP optimization in a reconfigurable 
manufacturing framework with the help of a reconfigurable multiparts manufacturing flow line.
Originality/value: The results of the case illustration have demonstrated the practical use of diversity control 
implemented in the MGATO technique. In comparison to MGAWTO, the implemented MGATO improves the 
population diversity through a customized threshold operator. It was clear that the MGATO can obtain better 
solution quality by foiling the tendency towards premature convergence.
Keywords: Reconfigurable manufacturing; Manufacturing process planning optimisation; Process selection; 
Process sequencing; Parts loading scheduling



Research paper672

Journal of Achievements in Materials and Manufacturing Engineering

N. Ismail, F. Musharavati, A.S.M. Hamouda , A.R.Ramli

Volume 31 Issue 2 December 2008

1. Introduction 
The importance and significance of reconfigurable 

manufacturing in the 21st century and beyond has been thoroughly 
discussed in the literature for reconfigurable manufacturing 
systems. A reconfigurable manufacturing system (RMS) is a 
system that is designed for cost-effective response to changes in 
production requirements. The goal in implementing an RMS is to 
be able to cope with random changes in production requirements 
through reconfiguration [2]. Reconfiguration is an iterative 
process that entails selection of a manufacturing configuration 
that is optimally fit for purpose. Due to the operational 
complexity in running an RMS, the tasks involved in identifying 
an optimally fit manufacturing configuration include matching of 
activities and resources. A manufacturing function that can be 
employed to handle such tasks is manufacturing process planning 
(MPP). This work focuses on a study of an optimization approach 
that can be used to address issues that are critical in providing an 
optimal match of activities and resources in a multiresource 
manufacturing line that produces multiple parts with 
reconfigurable flows. Such issues include: process selection, 
process sequencing and part load scheduling, i.e. the order of 
processing multiple parts.   

2 Literature review 
Central to the need to reconfigure a manufacturing system in 

order to cope with changes in production requirements is the issue 
of selecting an optimal manufacturing process plan suitable for a 
given production scenario. Traditionally, MPP has been tackled 
using two approaches: the Variant Approach and the Generative 
Approach [1]. The variant approach groups and assigns codes to 
families of components that require similar manufacturing set-
ups. In the event of a new production scenario, mostly in the form 
of a new component for manufacture, the code for the new 
component is mapped onto existing component families and the 
appropriate process plan is retrieved. Traditional techniques for 
retrieving the appropriate process plan included simple searches 
of existing data bases with the hope of finding an existing family 
with a similar code to that of the new component. Other more 
advanced techniques that have been used are based on 
applications of artificial intelligence [4]. However, the major 
drawbacks of using the variant approach include: (i) the approach 
assumes that the existing database contains a family whose 
attributes are similar to those of the new component and (ii) the 
retrieved process plan almost always has to be modified to suit the 
specific needs of the new component.  

Although implementation of artificial intelligence, as was the 
case-based reasoning technique suggested in [4], may enable 
more efficient retrieval and enhancement of the process plan 
modification activities, the previously cited drawbacks still 
outweigh the advantages when such an approach is implemented 
in dynamic manufacturing environments where changes to 
products, product configurations and production mix are random. 
Consequently, the probability of invalid mappings may be high 
since new components may not be represented in an existing 
database. Moreover, the time frames for the necessary 

modifications may be inadequate and existing component family 
databases risk obsolescence.  

On the other hand the generative approach selects a new 
process plan by using manufacturing heuristics and process 
knowledge. Although systematic and computer-based techniques 
have been used to improve this approach, as discussed in [6], the 
resulting plan is only feasible hence its implementation may result 
in suboptimal processing in the manufacturing system. Moreover, 
due to complexity in design and operation of new and innovative 
manufacturing systems like RMSs, implementing an only feasible 
plan may result in localized optimization that may down grade the 
overall manufacturing system performance. There is, therefore, a 
need to focus not only at implementing optimal manufacturing 
process plans but developing globally optimal ones.  

In the literature, considerations of optimal process plans have 
been proposed through applications of meta-heuristics like genetic 
algorithms [7] and simulated annealing [3]. The advantages of 
using such meta-heuristics lies in that unlike the random search or 
gradient descent methods, carefully designed meta-heuristic 
algorithms have the capability to find a near optimal solution in 
reasonable time and can escape from local optima. Hence; they 
provide better alternatives for the solution of complex 
optimization problems.    

A wide variety of process planning issues exists in the public 
literature. Due to the complexity in analyzing process planning 
and related issues, process planning research has tended to focus 
on analyzing one aspect of process planning issues. For example 
process selection as in (Ro et al, 1990; Lan et al, 2005) or process 
sequencing as in (Guo, Mileham, Owen and Li, 2006). In either 
case, the authors acknowledge that such process planning issues 
are intractable problems that require an optimization approach. 
The work presented in this paper discusses MPP optimization in 
reconfigurable multiparts flow lines from a macroscopic process 
planning optimization perspective. Although this work, like those 
cited above, generally takes the generative approach to process 
planning, the difference lies in (i) modelling reconfigurable 
multiparts flows rather than single part flows and (ii) capturing 
three aspects of process planning in a single optimization 
framework.   

3.  Manufacturing process planning 
optimization  

The goal of an optimization strategy for MPP is to help 
manufacturing engineers in identifying optimal manufacturing 
process plans in complex manufacturing activities. Implementation 
of optimal manufacturing process plans is crucial in dynamic 
manufacturing environments since it ensures that optimal operating 
levels are attained. In seeking an optimal solution, it is necessary to 
employ an appropriate optimization solution technique. From public 
literature on process planning, genetic algorithms have been 
identified as one option for solving complex process planning 
problems in an optimization perspective.  

The problem under study considers applications of the genetic 
algorithms in handling MPP optimization for multiple parts 
flowing in a reconfigurable manufacturing line. Thus, given a 
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production scenario (composed of many parts to be manufactured) 
and manufacturing resources (an array of processing modules that 
make up the reconfigurable manufacturing line), the problem is to 
select an optimal manufacturing process plan. Figure 1 depicts an 
illustrative reconfigurable multiparts flow line.  

Fig. 1. Reconfigurable multiple parts flow line 

The system is composed of a number of Processing Stages, 
PS=(psi), where i=1,2,3,…PS, and M=(mi), serial lines, where 
i=1,2,3…m. Each processing stage is composed of a number of 
Processing Modules, PM=(pmi), where i=1,2,3,…PM. Multi-
purpose processing machines, K = (ki), are also available in the 
manufacturing line, where k=0, 1, 2, 3….k. Such multiple purpose 
machines take the form of productive reserve capacity. The 
manufacturing system is designed to manufacture a product 
family of total parts NP = (npi), where i=1, 2, 3…np, under the 
following conditions:  
(i) Parts are not necessarily processed at all stages 
(ii) Processing modules in the same stage do not necessarily 

perform identical tasks 
(iii) Flexible routing exists in the multi stage processing line 

In such a manufacturing line, alternative processing routes are 
key issues that enhance the operations of a multiple parts line 
since they provide; routing flexibility, sequencing flexibility and 
processing flexibility, which can be used for logical 
reconfiguration issues. In analyzing such a manufacturing line, 
two issues may arise depending on the available information. In 
certain circumstances, alternative process plans may be available 
but due the numerous possible combinations of the alternative 
process plans, the goal in computing a solution methodology is to 
answer the question: which of the alternative combination of 
process plans results in the best operational level in addressing a 
given production scenario? On the other hand, the goal in 
computing the solution methodology may be to answer the 
question: for each of the individual parts of a given production 
scenario, what process plans are more flexible with respect to the 
available resources and which plans result in the best operating 
levels? The problem under study addresses the later.      

At each stage, a number of processes exist. The advantage of 
operating such a system is that it allows repeat processing and 
rearrangement of processes and, therefore, parts flowing in the 
system can be conveniently rerouted to alternative paths in 
response to changes in production capacity and manufacturing 

functionality. In operating such a line, it is always necessary to 
assess the routing of parts and sequencing of processing modules 
in terms of manufacturing system performance-based criteria. The 
selection problem considered in this work is based on a decision 
making process that matches activities and resources in an 
effective and efficient manner while simultaneously maximizing 
throughput and minimizing direct operating costs.  Solving such a 
problem requires a comprehensive analysis of interrelated 
decision making activities that aim at selecting an optimal 
manufacturing process plan.  

4. Manufacturing process planning 
optimization model 

The modelling approach starts with a description of the 
domain over which the solution is required. This step requires 
domain specific knowledge, which for this work includes: part 
types to be processed, the processes to be used, the type of 
processing machine primitives available to the manufacturing 
system and the way the manufacturing system is designed and 
operated. The solution space is given by the number of processing 
types (PSTs) required for each part, the available processing 
modules (PMs) for each processing type (PST), and the possible 
sequencing of the PMs for each part with respect to processing 
constraints.  

The next step in the solution is to represent the problem 
knowledge in a state depended design vector from which 
neighbourhood searches can generate new trial points through 
iterative perturbation. An objective function is then required to 
weigh out the design variables for goodness of fit for each trial 
point.

(a) Inputs 
Key inputs to the model include: a set of parts that make up a 

given production scenario, relevant product and production 
information and available processing module data that includes 
technological processing capabilities of the manufacturing 
system. 

Product information-The manufacturing system is to 
manufacture parts that belong to a range of part families. Let the 
number of part families be NPF=(npfi), where i=1,2,3,…npf,  and 
let the number of parts in a family be NP=(np), where 
i=1,2,3…np. Vector matrices can be defined from such product 
information as follows: 
Part Array (PA) is defined as an array of parts in a given 
production scenario to be manufactured in the system i.e. PA= 
[pi], where pi is a unique identity of the ith part in the production 
scenario.  
Production Volume Array (PVA) is defined as an array of 
production volume demands for parts in the production scenario 
i.e. PVA=[pvi], where pvi is the  volume of the ith part.
Production Cost Array (PCA) is defined as an array of estimated 
manufacturing costs for parts in the production scenario i.e. 
PCA=[pci], where pci is the production cost of the ith part 

Manufacturing system information-The parts are to be 
manufactured by an array of processing modules (PMs), defined 
by the processing module type and arranged in processing stages, 

4.  Manufacturing process 
planning optimization model
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n. Let the number of stages be N=(ni), where i=1,2,3…n, let the 
number of processing modules be NPM=(npmi), where 
i=1,2,3…npm., let the part similarity coefficient between parts i
and j be PS=(psi,j), where i and j are an ordered pair of parts, and 
let the processing module similarity coefficient between modules i
and j be  PMS=(pmsi,j), where i and j are an ordered pair of 
processing modules in the manufacturing system. Vector matrices 
for the manufacturing system can be defined as follows: 

Process Module Array (PMA) is defined as an array of 
available process modules from which alternative process 
modules can be specified for each part i.e. PMA=[PMi], where 
PMi is a unique identity of the ith process module. The part 
similarity (PS) coefficient matrix can be written as PS=[PSi,j],
where PSi,j is the similarity coefficient between parts i and j. The 
processing module similarity coefficient matrix can be written as 
PMS=[PMSi,j], where PMSi,j is the processing module similarity 
coefficient between process modules i and j.

(b) Evaluation criterion 
An optimal manufacturing plan that gives maximum 

throughput and minimum processing cost under dynamic changes 
in production requirements is bound to result in optimal operating 
levels. Most research efforts in the literature consider an 
evaluation based on one criterion [6]. However, as discussed in 
[5], combining criteria can result in a more revealing and 
comprehensive analysis of the system performance. Tang, Yip-
Hoi, Wang and Koren [5] suggested an implicit model that 
combines investment costs and throughput analysis. Investment 
cost was appropriate for their analysis since the problem they 
were dealing with focussed more on optimal line design. In this 
work, the emphasis is on operating characteristics; hence 
processing costs, rather than investment costs, are more 
appropriate for the analysis presented in this work. The evaluation 
criterion used in this work is, therefore, based on an implicit 
function that combines processing costs and throughput. The 
mathematical model can be represented as follows: 
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where       
 v       - 1/psi,j and: 
FTOC  - total operating cost function, defined as the sum of the cost 
components
FTH   - throughput function,  
K      - the operations required to produce the respective part(s) 

5 Genetic algorithm methodology 
The genetic algorithm methodology implements a genetic 

algorithm that is augmented by application specific heuristics in 
order to guide the search for an optimal solution. In order to foil 
the tendency of the algorithm to get stuck in local optima the 
usual approach in a simple genetic algorithm (SGA) is to foil 
premature population convergence by means of a mutation 

operator. Such a strategy works well depending on the specifics  
of the problem domain as well as the complexity of the search 
space [6]. 

For the multiresource manufacturing environment defined for 
the MPPO problem, there are alternative processing modules for a 
given process type. Since multiple parts are considered, there is a 
high chance of having many similar processing requirements that 
need similar alternative processing modules. This results in an 
increment in the number of similar chromosomes in the 
population. Such an increment spoils the ability of the mutation 
operator to maintain high population diversity.  

To solve the above mentioned problem, a customized 
threshold operator was developed to improve population diversity. 
Due to the complexity of the MPPO problem, the SGA was 
modified by inclusion of: (a) application specific heuristics to 
support the simple genetic algorithm, and (b) adapting genetic 
operators to the problem specific knowledge. In the actual 
implementation, two versions of modified genetic algorithms 
(MGAs) were experimented with: (1) modified genetic algorithms 
without a customized threshold operator (MGAWTO) and (2) a 
modified genetic algorithm with a customized threshold operator 
(MGATO) for foiling the tendency towards premature 
convergence.      

5.1 Application of the genetic algorithm
technique

The case study is based on the manufacturing system shown 
schematically in Figure 2. Raw materials enter the system through 
an input stage and exit the system through an output stage. The 
system is composed of sixteen (16) processing modules that are 
arranged in four processing stages. 

In Figure 2, the first digit represents the stage at which the 
processing module is located while the second digit uniquely 
identifies a specific processing module in a particular stage. The 
system in Figure 2 consists of a mixture of dedicated processing 
modules and two multi-purpose processing modules (2_7 and 2_8). 
A total of twenty (20) parts are to be manufactured in the 
manufacturing system. Relevant Production information include: 
production volume demands, estimated production costs, 
processing and handling times for the respective parts, process 
module similarity coefficients, part similarity coefficients as well 
as the linear distances between the processing modules. 

The algorithmic parameters used in running the MGA 
algorithms are displayed in the user interface window of the 
simulation. The same algorithmic parameters were used for the 
two modified versions of the genetic algorithm. However, in 
running the MGAWTO the check box for the threshold operator 
was unchecked thereby excluding the threshold operator.  

6. Discussion of results 
In order to generalize the behaviours of the two modified 

genetic algorithms when solving the MPPO problem, averages 
values of the evaluation metrics were computed. Table  1 shows  a 

6.  Discussion of results
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Table 1. 
Comparison of the results of fifty (50) runs of two genetic algorithms 

Algorithm Best
(fitness)

Solution time 
(min)

Mean 
(fitness)

Standard
deviation Median

Mean 
time 
(min)

MGATO 0.012037 21.80 0.012475 0.000298 0.012503 22.39 
MGAWTO 0.012223 21.66 0.013068 0.000591 0.013108 22.42 

Fig. 2. Schematic representation of the manufacturing system for the case study 

comparison of the mean cost function values and mean 
computation times required to reach an optimal solution.  

A comparison of columns 2 and 4 shows that the trends in the 
cost function values does not change i.e. the values for MGATO 
are lower in both cases. The same trend is observed for the 
median values in column 6. However, comparison of columns 3 
and 7 shows that on average, the computation time performance 
of MGATO is better than that of MGAWTO. This case illustrates 
one of the pitfalls of concluding based on single statistic 
performance values. A t-test analysis for a 95% confidence level 
revealed that the p-values for the mean fitness was less than 0.05 
while that for the mean times was greater than 0.05. Therefore, it 
can be inferred that there is no significant difference, statistically, 
between the computation times of the two algorithms. On the 
other hand, there is a significant difference in the computed mean 
fitness values. Based on the standard deviation values in Table 1, 
it can be inferred that there is more variability in the fitness values 
obtained from MGAWTO than those obtained from MGATO. 

The significant differences in the mean fitness values can be 
explained by considering the behaviour of the two algorithms. The 
two algorithms only differ in the sense that MGATO implements a 
threshold operator while MGAWTO does not. Therefore, the 
significant differences in the mean fitness values, which show 
superiority of MGATO over MGAWTO, can be attributed to the 
threshold operator. In this case, the threshold operator increases 
population diversity and hence allows a more extensive search for 
an optimal solution. Therefore, MGATO offers a better quality 
solution to the MPPO problem than MGAWTO.  

The manufacturing process plans obtained from the 
MGAWTO and MGATO are shown in Tables 2 and 3 

respectively. In these tables, Pi is the part identification number; 
PL is part loading profile while the optimum processing route 
profile shows the sequences of the processing modules as selected 
by the GA algorithm. The tables also shows the respective 
number of changes for each part processing, (a to e), together with 
the percentage of the available processing modules seized, (f), for 
processing each part. The optimum processing route profiles also 
indicates that there is provision for repeat processing.  

Comparison of the processing evaluations presented in Tables 
2 and 3 shows that the total number of changes in the 
manufacturing processes recommended by each of the two 
modified genetic algorithms differs by nine (9), those for the 
MGATO being higher. In addition, the average percentage of 
available process modules seized during the manufacturing 
process is higher for the MGATO, 45.5%, than for the 
MGAWTO, 43.6%. This may be due to the increased diversity, 
and hence processing options, offered through more extensive 
search when the threshold operator is implemented.  

The results reported in this section show that both MGA 
versions are able to converge to a feasible solution in real time. 
Therefore, they are suitable candidates for solving the MPPO 
model. However, MGATO demonstrated that it can find a better 
quality solution than MGAWTO. By comparing the processing 
evaluations in Table 2 and 3, it has been observed that; with the 
exception of the number of process module changes, difference of 
10, the other changes in the manufacturing process are of similar 
magnitudes. However, a higher average percentage of PMs seized 
in the manufacturing process is apparent in the solution profile 
obtained from MGATO. 
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Table 2. 
Optimal manufacturing process plan profiles obtained from the genetic algorithm without threshold operator (MGAWTO)  

Pi Processing Evaluation Optimum Processing Route Profiles PL a b c d e f (%) 
1 1_2    2_6    2_6    2_5    2_2    2_2    3_3    4_2 8 5 7 0 3 0 38 
2 1_2    2_13  2_13  2_4    2_4    2_1    2_1    3_3   4_2 2 5 8 2 6 2 38 
3 1_1    2_5    2_5    2_2    2_14  2_14  3_3    4_2 4 5 7 3 5 2 38 
4 1_2    2_5    2_14  3_3    4_2 13 4 4 2 3 1 31 
5 1_2    2_14  2_13  2_13  2_6    2_4    2_2    3_2    3_3    4_1    4_2 16 9 10 4 5 3 56 
6 1_2    2_5    2_14  2_14  2_4    3_3    4_2 10 5 6 3 4 2 38 
7 1_1    2_14  2_1    2_5    2_3    2_2    3_2    3_3    4_1    4_2 9 9 9 2 3 1 63 
8 1_2    2_5    2_13  2_2    2_14  2_4    3_3    3_4    4_1    4_2 5 9 9 4 5 2 63 
9 1_2    2_14  2_14  2_4    2_4    2_2    3_3    4_2 18 5 7 3 5 2 38 

10 1_2    2_13  2_5    2_5    2_2    2_6    3_3    4_2 7 6 7 2 4 1 44 
11 1_2    2_5    2_5    2_5    3_2    3_3    4_1    4_2 1 5 7 0 3 0 38 
12 1_2    2_13  2_13  2_2    3_3    4_2 6 4 5 3 4 2 31 
13 1_2    2_5    3_3    3_4    4_1    4_2 11 5 5 0 1 0 38 
14 1_2    2_6    2_6    2_6    2_4    2_4    3_3    4_2 14 4 7 0 4 0 31 
15 1_2    2_13  2_1    2_2    2_13  2_4    3_3    4_2 17 7 7 4 5 2 44 
16 1_2    2_14  2_5    2_1    2_2    2_14  2_4    2_5    2_5    3_3    4_1    4_2 12 10 11 4 6 2 56 
17 1_2    2_5    2_5    2_6    2_4    2_14  3_3    4_2 3 6 7 2 4 1 44 
18 1_2    2_14  2_4    2_4    2_13  3_3    4_1    4_2 15 6 7 4 6 2 44 
19 1_2    2_14  2_14  2_2    3_2    3_3    3_4    4_1    4_2 19 7 8 3 4 2 50 
20 1_2    2_6    2_13  2_13  2_13  2_2    2_14  2_4    2_4    3_3    4_2 20 7 10 6 8 4 50 

Total Changes in system = 440 123 148 51 88 30 A=43.6 
Key to Table: a-number of process module changes; b-number of setup changes; c-number of tool changes; d-number of reconfiguration changes; 
e-number of Productive Reserve Capacity Used; f-percentage of available process module seized and A-average % of process modules seized. 

Table 3. 
Optimal manufacturing process plan profiles obtained from the genetic algorithm with threshold operator (MGATO)  

Processing Evaluation Pi Optimum Processing Route Profiles PL a b c d e f (%) 
1 1_2    2_13  2_13  2_14  2_2    2_2    3_3    4_2 15 5 7 4 6 3 38 
2 1_2    2_14  2_14  2_5    2_4    2_1    2_1    3_3    4_2 19 6 8 3 5 2 44 
3 1_1    2_14  2_6    2_2    2_3    2_13  3_3    4_2 18 7 7 4 5 2 50 
4 1_2    2_5    2_13  3_3    4_2 16 4 4 2 3 1 31 
5 1_2    2_14  2_13  2_1    2_4    2_2    2_13  3_2    3_3    4_1    4_2 8 10 10 5 6 3 63 
6 1_2    2_13  2_14  2_14  2_4    3_3    4_2 10 5 6 4 5 3 38 
7 1_1    2_14  2_5    2_6    2_5    2_2    3_2    3_3    4_1    4_2 6 9 9 2 3 1 56 
8 1_2    2_14  2_14  2_4    2_1    2_2    3_3    3_4    4_1    4_2 20 8 9 3 4 2 56 
9 1_2    2_5    2_4    2_4    2_6    2_2    3_3    4_2 5 6 7 0 2 0 44 
10 1_2    2_13  2_6    2_6    2_5    2_2    3_3    4_2 3 6 7 2 4 1 44 
11 1_2    2_5    2_6    2_13  3_2    3_3    4_1    4_2 13 7 7 2 3 1 50 
12 1_2    2_6    2_6    2_2    3_3   4_2 4 4 5 0 2 0 31 
13 1_2    2_5    3_3    3_4    4_1   4_2 11 5 5 0 1 0 38 
14 1_2    2_6    2_6    2_14  2_14  2_4    3_3    4_2 2 5 7 3 5 2 38 
15 1_2    2_5    2_14  2_4    2_2    2_4    3_3    4_2 12 7 7 2 3 1 44 
16 1_2    2_13  2_5    2_13  2_4    2_13  2_14  2_2    2_5    3_3    4_1    4_2 17 11 11 7 8 4 56 
17 1_2    2_3    2_5    2_4    2_3    2_14  3_3    4_2 14 7 7 2 3 1 44 
18 1_2    2_5    2_5    2_5    2_4    3_3    4_1    4_2 9 5 7 0 3 0 38 
19 1_2    2_13  2_14  2_2    3_2    3_3    3_4    4_1    4_2 7 9 9 3 4 2 56 
20 1_2    2_14  2_14  2_14  2_14  2_2    2_3    2_5    2_4    3_3    4_2 1 7 10 5 6 4 50 

Total Changes in system = 449 133 149 53 81 33 A=45.5 
Key to Table: a-number of process module changes; b-number of setup changes; c-number of tool changes; d-number of reconfiguration changes; 
e-number of Productive Reserve Capacity Used; f-percentage of available process module seized and A-average % of process modules seized. 
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6. Conclusions 
This paper has examined the issues of MPP optimization  

in a reconfigurable manufacturing framework with the help  
of a reconfigurable multiparts manufacturing flow line.  
The manufacturing line under investigation has been depicted as  
a multiresource and multistage line that manufactures multiparts. 

Decisions for optimal selection of processes, optimal 
sequencing of the selected processes and optimal order  
of processing parts have been found to be interrelated thereby 
requiring a stochastic technique like genetic algorithms to search 
for an optimal solution.  

Modelling the decision making process in an optimization 
perspective has been found to be a feasible approach for a 
reconfigurable manufacturing framework. The genetic algorithm 
method has been found to be effective in modelling MPP 
optimization with sufficient convergence characteristics and the 
capability to find an optimal solution. Since the time taken to find 
the solutions is comparatively reasonable, the genetic algorithm 
method can be used for generating feasible and globally optimal 
manufacturing process plans for RMSs.    

The results of the case illustration have demonstrated the 
practical use of diversity control implemented in the MGATO 
technique. In comparison to MGAWTO, the implemented 
MGATO improves the population diversity through a customized 
threshold operator. It was clear that the MGATO can obtain better 
solution quality by foiling the tendency towards premature 
convergence. Moreover, processing evaluation indicate more 

flexibility in the manufacturing process plan selected through 
implementation of MGATO. 
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