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Abstract
Purpose: The purpose of the paper is to present the method of calculation of the cooling condition in the phase 
change problem. The considered problem consists of the reconstruction of a function describing the heat transfer 
coefficient, when the temperature values in selected points of the solid phase are known.
Design/methodology/approach: In numerical calculations, the Tikhonov regularization, the genetic algorithm 
and the alternating phase truncation method were used.
Findings: The featured examples of calculations show a very good approximation of the exact solution and 
stability of the procedure.
Practical implications: The paper presents an example of selection of the heat transfer coefficient given in the 
form of a continuous function. This method can be easily adopted also for the determination of other parameters 
of the problem discussed here.
Originality/value: The calculations made, only part of which has been presented in this paper, show stability of 
the method proposed, both in terms of the input data errors and the number of control points, thus corroborating 
usefulness of the presented approach.
Keywords: Solidification; Inverse Stefan Problems; Genetic algorithm; Tikhonov Regularization
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1. Introduction 

 
The mathematical models of a number of significant 

phenomena to be found in practice lead to different types of ill-
conditioned inverse problems for mathematical physics equations 
and, in particular, to incorrectly posed problems for the heat 
conduction equation. In general, such problems appear while 
trying to reconstruct the course of a process described by a 
correctly posed problem based on the results of measurements 
which should unequivocally determine the solution, but they do 
not do so in a correct way. Inverse problems for mathematical 
physics equations consists of the determination of e.g. the initial 
condition, the boundary conditions or the parameters of the 

material. The missing part of input information is compensated 
for with additional information, whose consequences result from 
the input conditions.  

A two-phase Stefan problem is a mathematical model of 
solidification of pure metals. It consists of determining the 
temperature distributions in a solid and a liquid phase, and 
defining the positions of moving interfaces (freezing front) when 
the initial condition, boundary conditions and the thermophysical 
properties of a body are known. In the inverse Stefan problem, the 
lack of information about part of initial conditions is compensated 
for with information about the knowledge of the moving interface 
position, its speed of shifting in a normal direction or the 
temperature in selected points of the domain.  
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It is possible to find an exact analytical solution of the inverse 
Stefan problem only in a few simple cases. In other cases we are 
left with approximate solutions only. Grzymkowski and Słota 
(2006) [1] used the Adomian decomposition method combined 
with optimization for an approximate solution of a one-phase 
inverse Stefan problem. However, Słota [2] applies the variational 
iteration method to the discussed problems. To solve an inverse 
design Stefan problem, where a function describing the boundary 
condition is to be determined, Ren  [3] takes advantage of the heat 
balance integral method. The author assumes that the temperature 
distribution in a solid phase is described by means of a third 
degree polynomial. Zabaras [4,5] considers a case where the 
additional information is the knowledge of temperature in selected 
points of the solid phase, and the interface position and its speed 
[4], or the heat flux on the domain boundary [5], are to be found. 
Liu [6] compares selected numerical methods to solve a one-
dimensional, one-phase inverse Stefan problem. 

An inverse Stefan problem was also applied in the modeling 
of the evaporation process [7], diffusion [8] or ablation [9,10]. In 
the works of Budman et al. [11], Rabin and Shitzer [12], an 
inverse Stefan problem was applied for the study and description 
of the solidification process taking place in biological tissues.  

There are also other papers available, which deal with various 
problems connected with solidification or heat treatment of 
different materials [13-19]. 

This paper presents an algorithm which enables solving a two-
phase inverse Stefan problem, where the heat transfer coefficient 
was determined for one of the domain boundaries. Based on the 
given information about the values of temperature in selected 
points of the solid phase, a functional determining the error of an 
approximate solution was built. To find the minimum of the 
functional, a genetic algorithm was applied [20,21] and to solve 
the direct Stefan problem, the alternating phase truncation method 
was used [22,23]. The inverse Stefan problem belongs to ill-
conditioned problems, meaning that its solution is unstable due to 
the errors of input data. This means that insignificant errors at the 
input may cause significant errors at the output. For the avoidance 
of such behavior, appropriate stabilizing procedures are applied. 
Here, the Tikhonov regularization method is used owing to the 
accuracy and stability of the results obtained [24,25]. In Słota’s 
papers [26,27], an analogical method was applied to solve an 
inverse design Stefan problem. 
 
 

2. Two-phase problem 
 
We will consider a two-phase problem. The boundary of the 

considered domain *,0,0 tbD  will be divided into five 
parts (Fig. 1): 

,,0,0,0 bxx   

,,,,0,,0,,0 *
1211 ttttttt kk  

,,,,,,0,, *
2221 ttttbtttb pp  

for which an initial condition and boundary conditions are 
predefined. Let 1D  denote the subset of domain D , which is 

occupied by a liquid phase, and let 2D  denote the domain 

occupied by a solid phase. The moving interface will be denoted 
as g . Let us assume that it is described by function tx . 

We will look for an approximate solution of the following 
problem. 
 

 
 

Fig. 1. Domain of the two-phase problem 
 
 

With the known values of temperatures in selected points of 
the solid phase ( 2, Dtx ji ): 

,,,2,1,,,2,1,, 212 NjNiUtxT ijji  (1) 

where 1N  means the number of sensors and 2N  means the 

number of measurements from each sensor, function t  

defined on boundaries k2  ( 2,1k ) is to be determined, and 

function t  describing the moving interface position and the 

distribution of temperatures kT  in domains kD  ( 2,1k ), 

which inside domains kD  ( 2,1k ) fulfil the heat conduction 
equation: 

,,, 2

2

tx
x
Ttx

t
Tc k

k
k

kk  (2) 

on boundary 0 , they fulfil the initial condition  

,0, 01 TxT  (3) 

on boundaries k1  ( 2,1k ), they fulfil the homogeneous 
second kind conditions: 
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,0),0( t
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Tk  (4) 

on boundaries k2  ( 2,1k ), they fulfil the third kind 
conditions: 

,,),( TtbTttb
x
T

k
k

k  (5) 

whereas on the moving interface g , they fulfil the temperature 

continuity condition and the Stefan condition: 

,,, *
21 TttTttT  (6) 
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where kc , k  and k  are the specific heat, the mass density 

and the thermal conductivity in the liquid phase ( 1k ) and solid 
phase ( 2k ), respectively,  is the heat transfer coefficient, 

0T  is the initial temperature, T  is the ambient temperature, *T  

is the temperature of solidification, L  is the latent heat of fusion, 
and t  and x  refer to time and spatial location, respectively. 

The direct Stefan problem occurring from equations (2)-(7) 
for a given heat transfer coefficient was solved via the alternating 
phase truncation method. As a result, the temperature distribution 
in the solid phase was obtained, constituting the reference point 
for a comparison of results. From the distribution, temperatures 

ijU , simulating the temperature measurements, are obtained. 

Further in the paper, the so obtained temperatures will be treated 
as accurate. 

Function t , describing the heat transfer coefficient, will 
be sought in the form of a function dependent (in a linear or non-
linear way) on n  parameters: 

.,,,; 21 ntt  (8) 

Let V  denotes a set of all functions in the form of (8). In real 
processes, function t  does not have an arbitrary value. 
Therefore, the problem of minimization with constraints has some 
practical importance. Assuming that: 

.,, u
i

l
iiVtV  (9) 

For the determined function Vt , the problem (2)-(7) 
becomes a direct Stefan problem, the solution of which allows 
finding the courses of temperatures jiij txTT ,2  

corresponding to function t . By taking advantage of the 

calculated temperatures ijT  and the given temperatures ijU , we 

can build a functional which will determine the error of the 
approximate solution: 

,22 tUTtJ  (10) 
where  is the regularization parameter and  

1 2

1 1

22 ,
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ijij UTUT  (11) 
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22 ,
t

dtttt  (12) 

t  is a weight function. 
To determine the regularization parameter, the discrepancy 

principle proposed by Morozov was used, according to which the 
regularization parameter is determined from the equality: 

,2UT  (13) 

where  is error estimation of the input data U . In practice, for 
a selected set of values j , nj ,,1,0  of the regularization 

parameter, there is element 
j

T  minimizing the Tikhonov 

functional (10). Next, such value 
0j  is selected as the sought 

regularization parameter, for which equation (13) is satisfied with 
the required accuracy.  
 
 

3 Genetic algorithm 
 

To find the Tikhonov functional minimum, a genetic 
algorithm was used. For the representation of the vector of 
decision variables, a chromosome was used in the form of a 
vector of real numbers (real number representation). The 
tournament selection  was applied in the algorithm. This selection 
is carried out so that two chromosomes are drawn and the one 
with better fitness, goes to a new generation. There are as many 
draws as individuals that the new generation is supposed to 
include.  

As the crossover operator, arithmetical crossover was applied, 

where as a result of crossing of two chromosomes 1  and 2 , 
their linear combinations are obtained: 

,1

,1
122

211

rr

rr
 (14) 

where parameter r  is a random number with a uniform 
distribution from the domain 1,0 . 

In the calculations, a nonuniform mutation operator was used 
as well. During mutation, the i  gene is transformed according 
to the equation: 

,,

,,
l
iii

i
u
ii

i  (15) 
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and a decision is taken at random which from the above formulas 
should be applied, where: 

,1, /1 dNrxx  (16) 
and r  is a random number with a uniform distribution from the 
domain 1,0 ,  is the current generation number, N  is the 

maximum number of generations and d  is a constant parameter. 
The elitist model was applied in the algorithm. In this model 

the best individual of the previous generation is saved and, if all 
individuals in the current generation are worse, the worst of them 
is replaced with the saved best individual from the previous 
population. The parameters of the genetic algorithm used in 
calculations are presented in Table 1. 
 
Table 1.  
Parameters of the genetic algorithm 
Population size 70
Number of generations 500
Crossover probability 0.7
Mutation probability 0.1
Parameter of nonuniform mutation 2.0

 
 

4  Calculation example 
 
Now we will present an example illustrating the accuracy and 

stability of the presented algorithm. In the presented example, the 
following values were assumed for the parameters: 

08.0b [m], 331 [W/(m K)], 302 [W/(m K)], 
8001c [J/(kg K)], 6902c [J/(kg K)], 70001 [kg/m3], 

75002 [kg/m3], 270000L [J/kg], 1773*T [K], 

323T [K] and 18130T [K]. 
In the alternating phase truncation method, the finite 

difference method was utilized, and the calculations were carried 
out on a grid with discretization steps equal 1.0t  and 

500/bx . A (reasonable) change of the grid density did not 
have any significant influence on the results obtained.  

Function 4321 ,,,;tt  was sought in the 
form (Fig. 2): 
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where 381t [s], 932t [s], 3503t [s], 750*t [s]. The 

set of constraints V  was determined in the following way: 

.400,2004,800,5003,900,6002,1500,11001;tV  
 
 

 
 

Fig. 2. Function t  
 

The exact values of the sought coefficients i  were: 
.250,600,800,1200 4321  

 
It was assumed that in the domain under consideration three 

thermocouples were present ( 31N ), located at a distance of 5 
[mm] (position A), 10 [mm] (position B) and 15 [mm] (position 
C) from the domain boundary (Fig. 3). The temperature was read 
out every 1 [s], 2 [s], 4 [s] or 8 [s]. This corresponded to a 
situation where from each thermocouple, 100, 50, 25 or 12 
measured temperature values were obtained, respectively. 

 

 
 

Fig. 3. Positions of the measurement points 
 

Tables 2-5 present the results of calculations of the sought 
heat transfer coefficient values (averages from ten runs of the 
genetic algorithm). The tables also show the relative percentage 
errors, with which the values were determined, the standard 
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deviations obtained for ten runs of the genetic algorithm and the 
values of such standard deviations, expressed as percent of mean 
value. For the input data given without perturbations, the heat 
transfer coefficient values are very well reconstructed (errors do 
not exceed 0.009%). As perturbation grows, the errors of the heat 
transfer coefficient reconstruction increase, however, they do not 
exceed the input data errors in any case.  

As can be seen from the presented results, the differences in 
solutions obtained for different numbers of control points are 
insignificant. 

 
 

Table 2. 
Calculation results for temperature control performed every 
second (  - reconstructed values of the heat transfer coefficient, 
e  - relative percentage error,  - standard deviation, p  - 
standard deviations in percent of mean value) 

Per.  e [%]  p [%]
1199.95 0.003964 0.109113 0.009093
800.04 0.004469 0.057014 0.007126
599.99 0.001708 0.032180 0.005363

0% 

249.99 0.000850 0.016251 0.006500
1204.07 0.339382 0.095254 0.007911
795.09 0.613802 0.053767 0.006762
602.28 0.379708 0.033769 0.005607

1% 

248.86 0.456167 0.021313 0.008564
1187.60 1.033462 0.117396 0.009885
806.33 0.791670 0.064906 0.008050
598.19 0.301788 0.029093 0.004863

2% 

250.69 0.274182 0.012773 0.005095
 
 
Table 3.  
Calculation results for temperature control performed every two 
seconds (designations identical to those in Table 2) 
Per.  e [%]  p [%] 

1199.89 0.008948 0.148247 0.012355 
800.06 0.007570 0.086612 0.010826 
599.99 0.002271 0.039972 0.006662 

0% 

250.01 0.002275 0.023323 0.009329 
1202.45 0.204299 0.069795 0.005804 
798.12 0.234813 0.035535 0.004452 
598.77 0.205319 0.017628 0.002944 

1% 

251.31 0.525000 0.009596 0.003818 
1188.22 0.981556 0.060388 0.005082 
802.73 0.341854 0.036286 0.004520 
603.52 0.586500 0.028089 0.004654 

2% 

248.67 0.531700 0.017147 0.006895 
 

Table 4.  
Calculation results for temperature control performed every four 
seconds (designations identical to those in Table 2) 
Per.  e [%]  p [%] 

1199.92 0.006833 0.141807 0.011818
800.06 0.007841 0.094688 0.011835
599.99 0.002379 0.028945 0.004824

0% 

249.99 0.000473 0.014237 0.005695
1189.01 0.915549 0.090959 0.007650
802.44 0.305104 0.043472 0.005417
600.95 0.157611 0.026862 0.004470

1% 

250.56 0.225667 0.012844 0.005126
1209.16 0.763500 0.097776 0.008086
794.69 0.664075 0.076037 0.009568
596.40 0.600417 0.039720 0.006660

2% 

253.41 1.365920 0.019161 0.007561
 
 
Table 5.  
Calculation results for temperature control performed every eight 
seconds (designations identical to those in Table 2) 
Per.  e [%]  p [%] 

1199.9 0.008788 0.104008 0.008668
800.0 0.008341 0.063568 0.007945
599.9 0.003894 0.028298 0.004717

0% 

250.0 0.003564 0.011341 0.004536
1190.08 0.826764 0.138199 0.011613
802.71 0.339031 0.072219 0.008997
601.06 0.176847 0.045261 0.007530

1% 

248.69 0.525933 0.024745 0.009950
1193.21 0.566192 0.055793 0.004676
792.70 0.912400 0.037100 0.004680
601.67 0.278767 0.024096 0.004005

2% 

249.55 0.181240 0.014103 0.005651
 
Figure 4 presents an accurate and reconstructed course of the 

heat transfer coefficient t  variability for temperature control 
every four seconds and every eight seconds, and perturbation of 
2%. The relative percentage error of the reconstruction of function 

t  amounted to 0.202% and 0.008%, respectively. In other 
cases, the function describing the heat transfer coefficient was 
determined with equally insignificant errors. 

Figure 5 presents accurate and reconstructed temperature 
distributions in control points  (A, B and C), also for temperature 
control performed every four seconds and every eight seconds, 
and perturbation of  2%. Where temperature control was 
performed every four seconds, the mean relative percent error was 
0.33%, with the maximum relative percent error amounting to 
0.74%. This was the worst result obtained during the calculations, 
however, the errors with which the temperature distributions were 
reconstructed are significantly lower than the input data error. In 
the latter result presented here, the errors were 0.09% and 0.19%, 
respectively. In the remaining cases, results with similarly small 
errors were obtained. 
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a) 

 
b) 

 
 
Fig. 4. Exact (solid line) and reconstructed (dots) distribution of the heat 
transfer coefficient  for perturbation equal to 2%, and for temperature 
control every four seconds (a) and every eight seconds (b) 
 
a) 

 
b) 

 
 
Fig. 5. Exact (solid line) and reconstructed (dots) distributions of 
the temperature in the measurement points for perturbation equal 
to 2%, and for temperature control every four seconds (a) and 
every eight seconds (b) 

a) 

 
 
b) 

 
 
Fig. 6. Exact (solid line) and reconstructed (dots) position of the 
freezing front for perturbation equal to 2%, and for temperature 
control every four seconds (a) and every eight seconds (b) 

 
 
Figure 6 presents an accurate and reconstructed position of 

the freezing front obtained for temperature control performed 
every four seconds and every eight seconds, and perturbation of 
2%. The mean relative percent errors, with which the freezing 
front position was reconstructed, were similar and amounted to 
0.75% and 0.76%, respectively. For a larger number of control 
points, the errors were lower and amounted to 0.31% for 
temperature control conducted every two seconds and 0.11% for 
temperature control performed every second (with the same 
perturbation of 2%). 

 
 

5. Conclusion 
 

The paper presents the determination method of cooling 
conditions in the phase change process. The solution of the 
problem consisted of selecting a heat transfer coefficient on one 
boundary, so that the temperature in selected points of the solid 
phase would assumed the given values. In the elaborated 
algorithm, the alternating phase truncation method, the Tikhonov 
regularization and genetic algorithms were utilized. 

The method requires that it must be possible to describe the 
sought boundary condition by means of a finite number of 
parameters. It is not necessary, however, that the sought boundary 
condition should be linearly dependent on those parameters. Since 

5.	�Conclusions
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anon-gradient optimization method was applied for the 
minimization of the functional so built, the minimized functional 
may also non-linearly depend on the parameters sought. 

The results presented in the paper show that for the input data 
given without perturbation, the function describing the cooling 
conditions is reconstructed with minimal errors being the 
consequence of the assumed end of the numerical procedure. A 
reduction of the number of control points, with accurate input 
data, does not cause any significant changes in the reconstructed 
boundary condition. The calculations made, only part of which 
has been presented in this paper, show stability of the method 
proposed, both in terms of the input data errors and the number of 
control points, thus corroborating usefulness of the presented 
approach. 

The paper presents an example of selection of the heat 
transfer coefficient given in the form of a continuous function. 
This method can be easily adopted also for the determination of 
other parameters of the problem discussed here.  
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