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Abstract
Purpose: In this work modification of the PCM method for determination of the surface fractal dimension is 
proposed. Complete reasoning, leading to correct formula for determination Ai(δ) is presented. In order to test 
modified method, data sets characterised by fractional fractal dimension were generated.
Design/methodology/approach: Three different algorithms to receive data sets describing surfaces with 
fractional fractal dimension were exploited (two algorithms of midpoint displacement and Falconer algorithm).
Findings: In this work detailed methodology for surface multifractal description, which may be directly applied 
for data obtained from the AFM microscope, was presented.
Research limitations/implications: The geometrical features description of surfaces of the coatings obtained 
in the PVD and CVD processes.
Practical implications: In presented work modified PCM method for determination of the surface fractal 
dimension was proposed. Performed calculations proved that new method make possible to determine this 
parameter more correctly. Differences are especially significant for rough surfaces, as what tested using series of 
data sets generated by algorithms for modelling surfaces with fractional fractal dimension.  Proposed modified 
method for determination of the fractal dimension can be used for description of the geometrical features of 
coatings obtained in the PVD and CVD processes.
Originality/value: Fractal and multifractal analysis gives possibility to characterise the extent of irregularities 
of the analysed surface in the quantitative way.
Keywords: Computer Assistance in the engineering tasks and scientific research; Fractal dimension; Multifractal 
spectrum
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W. Kwaśny, A modification of the method for determination of surface fractal dimension and multifractal 
analysis, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 115-125. 

 

 
1. Introduction 
 

The possibility of description of the investigated materials 
surfaces is an important issue for materials engineering. Such 

materials have characteristic geometrical features, whose 
description is connected with the following concepts: 
morphology, topography and surface shape. Investigation results 
[8-10] indicate existence of relationships between the coatings 
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surface morphology and the manufacturing technology, and 
determining them is very important, as the surface morphology 
has a significant effect on coating properties, like: roughness 
parameter, friction coefficient, hardness, and wear resistance  
[4-7]. Surface investigations of such material reveal its very 
important feature – irregularity, whose degree is independent on 
magnification used . The extent of irregularities of the analysed 
surface can be quantitatively characterised by the value of the 
surface fractal dimension D. In contrast to the integer value of the 
euclidean dimension (parameter used in traditional Euclidean 
geometry) surface fractal dimension D is the real number from the 
range of [2,3]. The state-of-the-art methods of the coatings 
surface topography description make it possible to determine 
relationships among the manufacturing technology parameters, 
structure, service properties, and their fractal dimension. 
Therefore, the problem of describing the geometrical features of 
surfaces of coatings obtained in the PVD processes is an 
important issue in surface engineering. A number of papers 
devoted to different methods of surface fractal dimension 
determination of engineering materials were published in recent 
years [11-17]. The projective covering method (PCM) is the most 
commonly used [6,7,18-24]. The analysed surface is divided into 
small fragments in that method and the areas of these fragments 
Ai(δ) are calculated (Fig. 1). Unfortunately, the formula which 
makes it possible to determine the area Ai(δ) of surfaces irregular 
in shape given in cited papers [6,7] was used without a 
mathematical proof. Moreover, the fractal dimension D values 
obtained with the cited formula are overstated (in same cases 
obtained values are larger than 3), which additionally challenges 
its correctness. A modification of the PCM method for 
determination of the surface fractal dimension is proposed in this 
work. Complete reasoning, leading to correct formula for 
determination Ai(δ) is presented. Data sets characterised by 
fractional fractal dimension were generated to test the modified 
method.  

 
 

 
 

Fig. 1. Projective covering method (division of the projection 
plane by means of the square net along with the projection onto 
the analysed surface and magnification of one element of the 
covering projective surface along with the projection onto the part 
of the analysed surface) 
 
 

Three different algorithms to generate data sets describing 
surfaces with fractional fractal dimension were used (two 
algorithms of midpoint displacement and Falconer algorithm). 
Surfaces of the investigated engineering materials generally don't 

exhibit a form of the purely self-similar fractals [34] and the self-
similarity is local only. The surface irregularity distribution 
changes depending on the analysed region. Concentration of large 
surface irregularities occurs in some area and concentration of 
small irregularities are visible simultaneously in other parts. 
Therefore, the multifractal analysis is commonly considered as 
the suitable method for correct description of real surfaces 
[6,35,36]. The detailed methodology for surface multifractal 
description, which may be directly applied for data obtained from 
the AFM microscope, is presented in the final part of this work. 
 
 
 

2. Algorithms for modeling surfaces 
with fractional fractal dimension 
 
 

The trajectories of the Brownian motion represent fractal 
curves in 2D space, while their generalization, the so-called 
Brownian surfaces, form fractal surfaces in 3D space. Fractional 
Brownian curves/surfaces can also be defined. In the Brownian 
motion definition Hurst H coefficient is used. Value of H is the 
real number from the range of (0, 1). The classical Brownian 
curve (surface) is obtained for H = 1/2. Fractal dimension of the 
fractional Brownian motion trajectory equals 2 − H, while the 
fractal dimension of fractional Brownian surface equals 3 − H. All 
definitions and theorems (with necessary descriptions) are 
presented in monograph [2]. 

One of the Brown surface generation methods characterized 
by fractional dimension is the midpoint displacement method 
[3,4]. A square net of points is used in this algorithm (Fig. 2). 
During the first step heights at each corner of the analized square 
net are selected at random. All drawn values have to be 
characterised by normal distribution with zero mean and variance  
σ (for simplification σ = 1 can be used, such distribution will be 
further designated as N(0, 1)). Transformation  from net of 
squares with sides δ (Fig. 2a) to net of squares with sides δ/2 
(Fig. 4b) takes place in two stages. During the first stage heights  
of the centres of all squares are calculated based the heights of its 
four corners (Fig. 2b): 

 

pshhhhh dcbas )(
4
1  (1) 

 
where p is a random number with normal distribution N(0, 1), and 
s is the scale coefficient. As a result, net of squares with sides 
δ/√2 rotated of angle 45o from the initial position is obtained (Fig. 
3a). In the interior part the net consists of the squares described 
above, at the edges it consists of triangles being halves of squares 
(Fig. 4a). During the second stage the heights of the centres of all 
squares of the rotated net are calculated (Fig. 3b). For triangles, 
the heights of the centres of sides on the net edge are calculated 
based on the heights of its three corners (Fig. 4a) : 
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Fig. 2. Fragment of the square net at the beginning of the first step 
of calculations (a) and points (■), whose heights are calculated 
during this step (b) 

 

 
 
Fig. 3. Fragment of the square net at the beginning of the second 
step of calculations (a) and poins (■), whose heights are 
calculated during this step (b) 

 

 
 
Fig. 4. Fragment of the square net next to the edge of the net (a) and 
fragment of the square after the second step of calculations (b) 

 
As a result of the two steps square net with sides δ/2, oriented 

the same way as the initial net, is created (Fig. 4b). 
Two implementations of the described algorithm are known 

[3,4], differing slightly from each other with the method for scale 
coefficient s determination. In the version proposed by Peitgen 
and Saupe [4] s is equal at the beginning to variance σ of the 
normal distribution used (usually s = 1). Before each next step of 
calculation its value is multiplied by √2−H. In the Martyn version 
[3] the scale coefficient is equal to s = σ√1 − 22H−2 at the 
beginning. Next at each step, that is during transformation from 
square net with sides δ to square net with sides δ/2, it is multiplied 
by 2−H. 

An analytic description of the fractional Brown surface is 
given at work [2]: 
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where H is Hurst exponent (H (0, 1)), λ is constant (λ>1), CK are 
independent random variables with normal distribution N(0, 1), 
Ak and Bk are independent random variables with even 
distribution in range [0, 2π).  

Such solution is inconvenient because it employs the infinite 
series. During calculations it is necessary to limit it to the finite 
elements only: 
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The above-mentioned formula is a base of the third algorithm 

(Falconer algorithm). 
Examples of fractal surfaces generated by the described 

algorithms for two values of Hurst exponent are presented in 
Figures 5-10. 
 

 
 
Fig. 5. Fractal surfaces generated by midpoint displacement 
algorithm (Peitgen and Saute version) for H = 0.25 
 

 
 

Fig. 6. Fractal surfaces generated by midpoint displacement 
algorithm (Martyn version) for H = 0.25 
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The above-mentioned formula is a base of the third algorithm 

(Falconer algorithm). 
Examples of fractal surfaces generated by the described 

algorithms for two values of Hurst exponent are presented in 
Figures 5-10. 
 

 
 
Fig. 5. Fractal surfaces generated by midpoint displacement 
algorithm (Peitgen and Saute version) for H = 0.25 
 

 
 

Fig. 6. Fractal surfaces generated by midpoint displacement 
algorithm (Martyn version) for H = 0.25 
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Fig. 7. Fractal surfaces generated by Falconer algorithm for 
H = 0.25 
 
 

 
 
Fig. 8. Fractal surfaces generated by midpoint displacement 
algorithm (Peitgen and Saute version) for H = 0.75 
 
 

 
 

Fig. 9. Fractal surfaces generated by midpoint displacement 
algorithm (Martin version) for H = 0.75 

 
 
Fig. 10. Fractal surfaces generated by Falconer algorithm  for H = 0.75 

 
 

3. Description of the modified 
projective covering method for the 
fractal dimension determination  
 
 

For any fractal set (curve, surface) the number of boxes N(δ) 
of side length δ required to cover considered set is described by 
the relationship [1,2]: 
 
N(δ) ≈ δ−D  (5) 
 
where D is the fractal dimension of the set. In order to determine 
the area of the fractal surface, for a fixed side length δ, the sum of 
the areas of the boxes covering the considered set is determined, 
which leads to: 
 
A(δ) = N(δ) δ2  (6) 
 

Putting relationship (5) into formula (6) leads to: 
 
A(δ) ≈ δ2−D  (7) 
 

If it is possible to determine areas of the considered surfaces 
for chosen values of the side length δ,  then the estimated value of 
the fractal dimension can be obtained. Exchanging the inequality 
(in 7) to equals sign, the following is obtained: 
 
A(δ) = C δ2−D                    (8) 

 
where C is the factor of proportionality. Finally, after calculations 
it can be expressed by: 
 
lnA(δ) = ln (C δ2−D)   (9) 
 
and: 
 
lnA(δ) = (2−D) ln δ + lnC    (10) 

 
In the bilogarithmic plot of (lnA(δ) versus lnδ) this 

relationship is linear. First, in order to determine the estimated 

 

value of fractal dimension, points (ln δ, lnA(δ)) are calculated, at 
least for a few values of length δ. In an ideal case the theoretical 
surfaces points (lnδ, lnA(δ)) are located exactly on a straight line. 
This is not true in general for real surfaces. Next, the obtained 
data are approximated by the linear function y=α+βx. Fractal 
dimension is determined as: 
 
D = 2 − β  (11) 

 
All the above-mentioned remarks can be used only if surface 

A(δ) area can be calculated for the fixed side length δ. Fractal 
dimension does not depend on size of the surface under consideration. 
Making conversion of variables,  it can be assumed that the analysed 
surface is the graph of a function h : Ω → R, where Ω  R2 is a 
square with sides parallel to  the axis and equal c0. Taking side length 
δ  in this way that δ is a submultiple of c0 (i.e. there exists such k N 
that c0 = k δ) it is possible to cover Ω with net of squares with sides 
parallel to axes and equal δ. Next, values of function h are determined 
(for real surfaces these values are known from measurements) in 
points indicated by this net. The analysed net consists of N(δ) squares. 
By determination of areas Ai(δ), i = 1, . . . ,N(δ) of all fragments of the 
analysed surface and by totalling them, the total area of the analysed 
surface can be obtained: 
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The surface area Ai(δ) described by function h over square 

abcd (curved set in space) in general is described by the integral: 
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The analytical formula of function h is needed, while only values 

of variables in four points (corners) of the square are determined 
during measurements. Therefore, it is necessary to specify a formula 
which will make it possible to estimate an area of the analysed surface 
using values for these points only. Using symbols like those in 
Figure 11, the analysed surface can be approximated by two triangles 
ABC and CDA. The ABC triangle surface can be determined as the 
area of a triangle formed with the BA and BC vectors [5]: 
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where × means the cross product, || means vector length and  is 
an angle between vectors BA and BC. Similarly, surface of the 
CDA triangle  can be determined as the area of a triangle formed 
with the DA and DC vectors.  
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For the known vectors u = (ux, uy, uz) and v = (vx, vy, vz), the 

length of theirs cross product can be calculated as [5]: 
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Fig. 11. Auxiliary graph for the formula for determination of the 
approximated value of the Ai(δ) area 

 
Using symbols as those in Figure 11 the necessary points have 

coordinates: 
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Putting formula (16) the following can be obtained: 
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The approximated area Ai(δ) of the analysed surface can be 

calculated as a sum of the ABC and CDA triangles surfaces. 
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In other works [6,7] the estimated area Ai(δ) is given as: 
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This formula was given without any justification. It can be 
justificated in the following way: the area Ai(δ) can be calculated 
as sum of two triangles - ABC and CDA. For these triangles the 
following inequalities are true: 
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2
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where 1 and 2 are angles between vectors. Therefore, it can be 
assumed that the approximated area of part of analized surfaces 
can be calculated as sum of upper limitations of these triangles: 
 

DCDABCBAAi 2
1)(   (25) 

 
Then lengths of vectors have to be calculated, using formula 

(18), which leads to: 
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Taking into consideration the obtained results and relationship 

(25), formula  (22) is obtained. It means that formula given by 
Xie, Wang and Kwasniewski [6,7] is less universal than formula 
(21) because of its main additional assumption that perpendicular 
vectors (sin =1) were used, which generally is not true.   
 
 

4. Verification of the modified 
projective covering method for the 
fractal dimension determination  
 
 

For verification of the modified projective covering method 
(with modified formula (21) for determination of value of the area 
Ai(δ)), data sets which model surfaces with fractional fractal 
dimension were used. Three previously described algorithms were 
used for their generation: two algorithms of midpoint 
displacement and Falconer algorithm. 

Fractal dimension results obtained for nine different Brown 
surfaces are presented in Tables 1-3. Results obtained for Brown 
surfaces generated by algorithm of random midpoint displacement 
(Table 1 - Peitgen and Saute version, Table 2 - Martin version) 
are shown in Tables 1 and 2. Results obtained for  Brown surfaces 

generated by Falconer algorithm are presented in Table 3. In the 
last case only first 30 elements of the series were used (i.e. n=30) 
and value λ = 2 was chosen. In all surface generation cases the net 
of 512×512 squares was used. An area A(δ) was calculated using 
two formulae described earlier, for the following lengths: 
 

}512,256,128,64,32,16,8,4,2,{ ssssssssss cccccccccc   (27) 
 
where cs = 1/512 is a length of the square side in net used for 
simulation. As a result 10 points (lnδ, lnA(δ)) plotted on 
bilogarithmic graph were obtained and then approximated by 
linear function.  

The slope of this function was used for fractal dimension 
determination. The relative errors calculated according following 
relationship are also presented in Tables:    
 

H

H

D
DD
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where D means the calculated value of fractal dimension and 
DH = 3−H is the theoretical value of fractal dimension of the 
analysed surface.  
 

The modified PCM method gives the fractal dimension values 
in range [2,3] for the three surface generation algorithms used, 
whereas the PCM method used so far gives senseless fractal 
dimension values often larger than 3, especially for surfaces with 
H<0.5 (Figs. 12-14). The calculations from this work prove that 
the modified projective covering method for the fractal dimension 
determination with the modified formula for determination of area 
of the surface irregular in shape Ai(δ) (21) gives more reasonable 
results (closer to the theoretical values, indicated on Figures as a 
straight line – optimal results) than those obtained so far using 
relationship (22) from work [6,7]. Differences between the old 
version and version proposed in this study are especially 
important for rough surfaces (D>2.2). These observations are also 
confirmed by the sum of relative errors obtained from calculations 
(Tables 1-3). 
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Fig. 12. Comparison of fractal dimension D obtained by PCM and 
modified PCM method (obtained for Brown surface generated by 
algorithm of random midpoint displacement - Peitgen and Saute 
version 

 

Table 1. 
Fractal dimension values obtained for Brown surface generated by algorithm of random midpoint displacement (Peitgen and Saute version) 

Fractal dimension D 
 (calculated values) Relative error E 

Hurst 
coefficient H 

Fractal 
dimension  
DH = 3-H 

(theoretical 
values) 

PCM method 
(relationship 22) 

Modified PCM 
method 

(relationship 21) 

PCM method 
(relationship 22) 

Modified PCM 
method 

(relationship 21) 
0.1 2.9 3.79367 2.90269 0.30816 0.00093 
0.25 2.75 3.52401 2.76276 0.28146 0.00464 
0.5 2.5 2.98363 2.49824 0.19345 0.00070 
0.75 2.25 2.51345 2.26881 0.11709 0.00836 
0.9 2.1 2.32628 2.15217 0.10775 0.02484 
0.95 2.05 2.22865 2.13078 0.08715 0.03940 
0.98 2.02 2.26917 2.08978 0.12335 0.03454 
0.99 2.01 2.19915 2.10707 0.09410 0.04829 

0.995 2.01 2.21061 2.12241 0.09981 0.05593 
 
 
Table 2. 
Fractal dimension values obtained for Brown surface generated by algorithm of random midpoint displacement (Martyn version) 

Fractal dimension D 
 (calculated values) Relative error E 

Hurst coefficient 
H 

Fractal 
dimension  
DH = 3-H 

(theoretical 
values) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

0.1 2.9 3.79417  2.89176  0.30833  0.00284 
0.25 2.75 3.48295  2.74411  0.26653  0.00214 
0.5 2.5 3.00181  2.50134  0.20072  0.00054 
0.75 2.25 2.49395  2.25974  0.10842  0.00433 
0.9 2.1 2.22727  2.12584  0.06060  0.01230 
0.95 2.05 2.24844  2.09619  0.09680  0.02253 
0.98 2.02 2.03660  2.02071  0.00822  0.00035 
0.99 2.01 2.04201  2.02718  0.01593  0.00855 

0.995 2.01 2.15584  2.01085  0.07256  0.00042 
 
 
Table 3.  
Fractal dimension values obtained for Brown surface generated by Falconer algorithm  

Fractal dimension D 
 (calculated values) Relative error E 

Hurst coefficient 
H 

Fractal 
dimension  
DH = 3-H 

(theoretical 
values) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

0.1 2.9 3.80302  2.90903  0.31139  0.00311 
0.25 2.75 3.48020  2.75522  0.26553  0.00190 
0.5 2.5 3.06106  2.56551  0.22442  0.02620 

0.75 2.25 2.38910  2.24086  0.06182  0.00406 
0.9 2.1 2.16977  2.08364  0.03322  0.00779 

0.95 2.05 2.17457  2.12080  0.06077  0.03454 
0.98 2.02 2.06241  2.04559  0.02100  0.01267 
0.99 2.01 2.10795  2.07096  0.04873  0.03033 
0.995 2.01 2.06442  2.04500  0.02707  0.01741 
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determination 
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This formula was given without any justification. It can be 
justificated in the following way: the area Ai(δ) can be calculated 
as sum of two triangles - ABC and CDA. For these triangles the 
following inequalities are true: 
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where 1 and 2 are angles between vectors. Therefore, it can be 
assumed that the approximated area of part of analized surfaces 
can be calculated as sum of upper limitations of these triangles: 
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Then lengths of vectors have to be calculated, using formula 

(18), which leads to: 
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Taking into consideration the obtained results and relationship 

(25), formula  (22) is obtained. It means that formula given by 
Xie, Wang and Kwasniewski [6,7] is less universal than formula 
(21) because of its main additional assumption that perpendicular 
vectors (sin =1) were used, which generally is not true.   
 
 

4. Verification of the modified 
projective covering method for the 
fractal dimension determination  
 
 

For verification of the modified projective covering method 
(with modified formula (21) for determination of value of the area 
Ai(δ)), data sets which model surfaces with fractional fractal 
dimension were used. Three previously described algorithms were 
used for their generation: two algorithms of midpoint 
displacement and Falconer algorithm. 

Fractal dimension results obtained for nine different Brown 
surfaces are presented in Tables 1-3. Results obtained for Brown 
surfaces generated by algorithm of random midpoint displacement 
(Table 1 - Peitgen and Saute version, Table 2 - Martin version) 
are shown in Tables 1 and 2. Results obtained for  Brown surfaces 

generated by Falconer algorithm are presented in Table 3. In the 
last case only first 30 elements of the series were used (i.e. n=30) 
and value λ = 2 was chosen. In all surface generation cases the net 
of 512×512 squares was used. An area A(δ) was calculated using 
two formulae described earlier, for the following lengths: 
 

}512,256,128,64,32,16,8,4,2,{ ssssssssss cccccccccc   (27) 
 
where cs = 1/512 is a length of the square side in net used for 
simulation. As a result 10 points (lnδ, lnA(δ)) plotted on 
bilogarithmic graph were obtained and then approximated by 
linear function.  

The slope of this function was used for fractal dimension 
determination. The relative errors calculated according following 
relationship are also presented in Tables:    
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where D means the calculated value of fractal dimension and 
DH = 3−H is the theoretical value of fractal dimension of the 
analysed surface.  
 

The modified PCM method gives the fractal dimension values 
in range [2,3] for the three surface generation algorithms used, 
whereas the PCM method used so far gives senseless fractal 
dimension values often larger than 3, especially for surfaces with 
H<0.5 (Figs. 12-14). The calculations from this work prove that 
the modified projective covering method for the fractal dimension 
determination with the modified formula for determination of area 
of the surface irregular in shape Ai(δ) (21) gives more reasonable 
results (closer to the theoretical values, indicated on Figures as a 
straight line – optimal results) than those obtained so far using 
relationship (22) from work [6,7]. Differences between the old 
version and version proposed in this study are especially 
important for rough surfaces (D>2.2). These observations are also 
confirmed by the sum of relative errors obtained from calculations 
(Tables 1-3). 
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Fig. 12. Comparison of fractal dimension D obtained by PCM and 
modified PCM method (obtained for Brown surface generated by 
algorithm of random midpoint displacement - Peitgen and Saute 
version 

 

Table 1. 
Fractal dimension values obtained for Brown surface generated by algorithm of random midpoint displacement (Peitgen and Saute version) 

Fractal dimension D 
 (calculated values) Relative error E 

Hurst 
coefficient H 

Fractal 
dimension  
DH = 3-H 

(theoretical 
values) 

PCM method 
(relationship 22) 

Modified PCM 
method 

(relationship 21) 

PCM method 
(relationship 22) 

Modified PCM 
method 

(relationship 21) 
0.1 2.9 3.79367 2.90269 0.30816 0.00093 
0.25 2.75 3.52401 2.76276 0.28146 0.00464 
0.5 2.5 2.98363 2.49824 0.19345 0.00070 
0.75 2.25 2.51345 2.26881 0.11709 0.00836 
0.9 2.1 2.32628 2.15217 0.10775 0.02484 
0.95 2.05 2.22865 2.13078 0.08715 0.03940 
0.98 2.02 2.26917 2.08978 0.12335 0.03454 
0.99 2.01 2.19915 2.10707 0.09410 0.04829 

0.995 2.01 2.21061 2.12241 0.09981 0.05593 
 
 
Table 2. 
Fractal dimension values obtained for Brown surface generated by algorithm of random midpoint displacement (Martyn version) 

Fractal dimension D 
 (calculated values) Relative error E 

Hurst coefficient 
H 

Fractal 
dimension  
DH = 3-H 

(theoretical 
values) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

0.1 2.9 3.79417  2.89176  0.30833  0.00284 
0.25 2.75 3.48295  2.74411  0.26653  0.00214 
0.5 2.5 3.00181  2.50134  0.20072  0.00054 
0.75 2.25 2.49395  2.25974  0.10842  0.00433 
0.9 2.1 2.22727  2.12584  0.06060  0.01230 
0.95 2.05 2.24844  2.09619  0.09680  0.02253 
0.98 2.02 2.03660  2.02071  0.00822  0.00035 
0.99 2.01 2.04201  2.02718  0.01593  0.00855 

0.995 2.01 2.15584  2.01085  0.07256  0.00042 
 
 
Table 3.  
Fractal dimension values obtained for Brown surface generated by Falconer algorithm  

Fractal dimension D 
 (calculated values) Relative error E 

Hurst coefficient 
H 

Fractal 
dimension  
DH = 3-H 

(theoretical 
values) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

PCM method 
(relationship 22) 

Modified PCM method
(relationship 21) 

0.1 2.9 3.80302  2.90903  0.31139  0.00311 
0.25 2.75 3.48020  2.75522  0.26553  0.00190 
0.5 2.5 3.06106  2.56551  0.22442  0.02620 

0.75 2.25 2.38910  2.24086  0.06182  0.00406 
0.9 2.1 2.16977  2.08364  0.03322  0.00779 

0.95 2.05 2.17457  2.12080  0.06077  0.03454 
0.98 2.02 2.06241  2.04559  0.02100  0.01267 
0.99 2.01 2.10795  2.07096  0.04873  0.03033 
0.995 2.01 2.06442  2.04500  0.02707  0.01741 
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Fig. 13. Comparison of fractal dimension D obtained by PCM and 
modified PCM method (obtained for Brown surface generated by 
algorithm of random midpoint displacement - Martyn version) 
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Fig. 14. Comparison of fractal dimension D obtained by PCM and 
modified PCM method (obtained for Brown surface generated by 
Falconer algorithm) 

 
 
5. Methodology for surface multifractal 
description 
 

The reasoning connected with the detailed methodology for 
surface multifractal description is based to a large degree on Xie's 
work [7], but some modification (modified formula (21) for 
determination of area of the surface irregular in shape Ai(δ)) was 
taken into consideration. Let’s consider a surface described on 
square (i.e. domain (the projection plane) is a square, obtained as 
an orthogonal projection of this set). The surface can be described 
by analytical function or by discrete sets (e.g. from 
measurements)). Covering the analysed set with the net of squares 
with sides δ (Fig.1) (for discrete function localization of the 
measurements points have to be situated at square corners), the 
area of a rough surface Ai(δ) connected with each fragment 
(square) of the projection plane can be calculated (relationship 
21). By determination of areas Ai(δ), i = 1, . . . ,N(δ) of all 

fragments of the analysed surface and by totalling them, the total 
area of analized surface can be obtained (relationship 12).  

The measure on each box (probability connected with each 
box) can be defined as : 
 

)(
)()(

A
AP i

i
   (29) 

 
Parameter αi, called Hölder exponent of singularity is also 

connected with each box: 

 
i

iP )( .   (30) 

 
Let’s consider Nα(δ) is a number of boxes characterised by 

parameter αi in range α and α+dα. Then function f(α), called 
multifractal spectrum, can be defined as fractal dimension of the 
set of boxes characterised by parameter αi. Then: 
 
Nα(δ) ≈ δ−f(α)  .        (31) 
 

The partial function Zq(δ) (the so-called partition function) is 
defined in the following way: 
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Using this formula the generalised fractal dimension D(q)  can 

be expressed by: 
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For partial function Zq(δ), the relationship is obtained [5]: 

 
Zq(δ)≈ δq α(q)−f(α(q))  .    (34) 
 

On putting the auxiliary function τ(q) (convex function): 
 
τ (q) = q α(q) − f(α(q)),    (35) 

 
the previous relationship can be expressed as: 
 
Zq(δ)≈δτ(q)  .       (36) 

 
By considering the derivative of τ (q): 
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Relationship (35) is called as Legendre transformation. From 

(34), (35) and (36), the relationship between auxiliary function τ 
(q) and generalised fractal dimension D(q)  is obtained [4]: 
 
τ (q) = (q − 1)D(q).   (38) 

 

The normalized measure is construed on probability values in 
such a way that for each q value measure (probability) connected 
with box indexed by “i” is defined as [1, 2]:  
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It can be obtained from (38) and (33): 
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On putting (37) and defined above measure the following 

relationship is true: 
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Similar relationship can be obtained for the multifractal 

spectrum f(α) [1]: 
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Relationship (33) makes it possible to determine the 

generalised fractal dimension for q  1. On putting D(1) = limq→1 
D(q) we get: 
 
D(1) = α(1) = f(α(1)).   (43) 
 

On employing relationships described above two algorithms 
for multifractal spectrum f(α)  and the generalised fractal 
dimension calculation can be produced.  There are the moments 
method algorithm [5] and Chabry-Jensen algorithm [2, 1] (see 
also [7, 8]). 
 
 
5.1. Moments method algorithm 
 
1. Exponent values qk, k = 1, 2, . . . , nq, and length of the box 

sides δj, j = 1, 2, . . . , nδ are fixed 
2. The projection plane is covered  by boxes with side lengths δj, 

for j = 1, 2, . . . , nδ, and then value Pi(δj) is determined  for 
each box measure (relationship (29)). 

3. The partial function Zq(δ) values for fixed δj and  qk are 
determined (relationship (32)). 

4. For  qk, k = 1, 2, . . . , nq, relationships between log Zqk(δj) and 
log δ are tested. If such relationships are linear, than τ(qk) is 
equal the slope of the line (relationship 36). 

5. On employing Legendre transformation values of α(qk) and 
f(α(qk)) are computed.  

6. The generalised fractal dimension D(qk) can be easily 
calculated using τ(qk) values obtained earlier  (point 4) in 
formula (38), with qk = 1 and  D(1) = α(1) (relationship (43)). 

 
 
5.2. A Chabra-Jensen algorithm 
 
1. 1.Exponent values qk, k = 1, 2, . . . , nq, and length of the box 

sides δj, j = 1, 2, . . . , nδ are fixed. 
2. The projection plane is covered  by boxes with side lengths δj, 

for j = 1, 2, . . . , nδ, and then value Pi(δj) is determined for 
each box measure (relationship (29)). 

3. For each box and for fixed values δj and qk values of the 
normalized measure µi(qk, δj) are determined (relationship 
(39)). 

4. For fixed values of qk  values of Hölder exponent of 
singularity are determined as the slope of the approximation 
line for relationship:  
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which is a consequence of (41). 
 
5. Values of the multifractal spectrum f(qk), for fixed qk, are 

determined as the slope of the approximation line for 
relationship: 
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which is a consequence of (41). 
 
6. Values of the generalised fractal dimension D(qk), for fixed 

qk, qk  1, can be determined as division of slope value of the 
approximation line for relationship: 
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and binomial q − 1 (which is a consequence of  (33)). For dla 
qk = 1 we give D(1) = α(1) (relationship (43)). 
 

A typical example of the multifractal spectrum is presented in 
Figure 15. Two parameters (width Δα and the spectrum arms’ 
heights difference Δf ) are two most important characteristics in 
the description in the multifractal [11]. Width of the multifractal 
spectrum Δα is determined as:   
 

minmax ,  (47) 
 
while the spectrum arms’ heights difference Δf is defined as: 
 

)()( maxmin fff .   (48) 

5.	�Methodology for surface 
multifractal description
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Fig. 13. Comparison of fractal dimension D obtained by PCM and 
modified PCM method (obtained for Brown surface generated by 
algorithm of random midpoint displacement - Martyn version) 
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Fig. 14. Comparison of fractal dimension D obtained by PCM and 
modified PCM method (obtained for Brown surface generated by 
Falconer algorithm) 

 
 
5. Methodology for surface multifractal 
description 
 

The reasoning connected with the detailed methodology for 
surface multifractal description is based to a large degree on Xie's 
work [7], but some modification (modified formula (21) for 
determination of area of the surface irregular in shape Ai(δ)) was 
taken into consideration. Let’s consider a surface described on 
square (i.e. domain (the projection plane) is a square, obtained as 
an orthogonal projection of this set). The surface can be described 
by analytical function or by discrete sets (e.g. from 
measurements)). Covering the analysed set with the net of squares 
with sides δ (Fig.1) (for discrete function localization of the 
measurements points have to be situated at square corners), the 
area of a rough surface Ai(δ) connected with each fragment 
(square) of the projection plane can be calculated (relationship 
21). By determination of areas Ai(δ), i = 1, . . . ,N(δ) of all 

fragments of the analysed surface and by totalling them, the total 
area of analized surface can be obtained (relationship 12).  

The measure on each box (probability connected with each 
box) can be defined as : 
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Parameter αi, called Hölder exponent of singularity is also 

connected with each box: 
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Let’s consider Nα(δ) is a number of boxes characterised by 

parameter αi in range α and α+dα. Then function f(α), called 
multifractal spectrum, can be defined as fractal dimension of the 
set of boxes characterised by parameter αi. Then: 
 
Nα(δ) ≈ δ−f(α)  .        (31) 
 

The partial function Zq(δ) (the so-called partition function) is 
defined in the following way: 
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Using this formula the generalised fractal dimension D(q)  can 

be expressed by: 
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For partial function Zq(δ), the relationship is obtained [5]: 

 
Zq(δ)≈ δq α(q)−f(α(q))  .    (34) 
 

On putting the auxiliary function τ(q) (convex function): 
 
τ (q) = q α(q) − f(α(q)),    (35) 

 
the previous relationship can be expressed as: 
 
Zq(δ)≈δτ(q)  .       (36) 

 
By considering the derivative of τ (q): 
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Relationship (35) is called as Legendre transformation. From 

(34), (35) and (36), the relationship between auxiliary function τ 
(q) and generalised fractal dimension D(q)  is obtained [4]: 
 
τ (q) = (q − 1)D(q).   (38) 

 

The normalized measure is construed on probability values in 
such a way that for each q value measure (probability) connected 
with box indexed by “i” is defined as [1, 2]:  
 

)(
))((

))((

))((),( )(

1

q

q
i

N

i

q
i

q
i

i Z
P

P

Pq      (39) 

 
It can be obtained from (38) and (33): 
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On putting (37) and defined above measure the following 

relationship is true: 
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Similar relationship can be obtained for the multifractal 

spectrum f(α) [1]: 
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Relationship (33) makes it possible to determine the 

generalised fractal dimension for q  1. On putting D(1) = limq→1 
D(q) we get: 
 
D(1) = α(1) = f(α(1)).   (43) 
 

On employing relationships described above two algorithms 
for multifractal spectrum f(α)  and the generalised fractal 
dimension calculation can be produced.  There are the moments 
method algorithm [5] and Chabry-Jensen algorithm [2, 1] (see 
also [7, 8]). 
 
 
5.1. Moments method algorithm 
 
1. Exponent values qk, k = 1, 2, . . . , nq, and length of the box 

sides δj, j = 1, 2, . . . , nδ are fixed 
2. The projection plane is covered  by boxes with side lengths δj, 

for j = 1, 2, . . . , nδ, and then value Pi(δj) is determined  for 
each box measure (relationship (29)). 

3. The partial function Zq(δ) values for fixed δj and  qk are 
determined (relationship (32)). 

4. For  qk, k = 1, 2, . . . , nq, relationships between log Zqk(δj) and 
log δ are tested. If such relationships are linear, than τ(qk) is 
equal the slope of the line (relationship 36). 

5. On employing Legendre transformation values of α(qk) and 
f(α(qk)) are computed.  

6. The generalised fractal dimension D(qk) can be easily 
calculated using τ(qk) values obtained earlier  (point 4) in 
formula (38), with qk = 1 and  D(1) = α(1) (relationship (43)). 

 
 
5.2. A Chabra-Jensen algorithm 
 
1. 1.Exponent values qk, k = 1, 2, . . . , nq, and length of the box 

sides δj, j = 1, 2, . . . , nδ are fixed. 
2. The projection plane is covered  by boxes with side lengths δj, 

for j = 1, 2, . . . , nδ, and then value Pi(δj) is determined for 
each box measure (relationship (29)). 

3. For each box and for fixed values δj and qk values of the 
normalized measure µi(qk, δj) are determined (relationship 
(39)). 

4. For fixed values of qk  values of Hölder exponent of 
singularity are determined as the slope of the approximation 
line for relationship:  
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which is a consequence of (41). 
 
5. Values of the multifractal spectrum f(qk), for fixed qk, are 

determined as the slope of the approximation line for 
relationship: 
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which is a consequence of (41). 
 
6. Values of the generalised fractal dimension D(qk), for fixed 

qk, qk  1, can be determined as division of slope value of the 
approximation line for relationship: 
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and binomial q − 1 (which is a consequence of  (33)). For dla 
qk = 1 we give D(1) = α(1) (relationship (43)). 
 

A typical example of the multifractal spectrum is presented in 
Figure 15. Two parameters (width Δα and the spectrum arms’ 
heights difference Δf ) are two most important characteristics in 
the description in the multifractal [11]. Width of the multifractal 
spectrum Δα is determined as:   
 

minmax ,  (47) 
 
while the spectrum arms’ heights difference Δf is defined as: 
 

)()( maxmin fff .   (48) 

5.1.	�Moments method algorithm

5.2.	�A Chabra-Jensen algorithm
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Results of the multifractal analysis of the surface topography 
obtained from the AFM microscope described in the literature [40] 
suggest that the spectrum breadth is connected with roughness of 
coatings. Parameters f(αmax) and f(αmin) reflect the numbers of boxes 
(NPmax(δ)=Nαmin~δ-f(αmin)) with the maximum and 
(NPmin(δ)=Nαmax~δ-f(αmax)) minimum probability values respectively. 
Value Δf=f(αmin)- f(αmax) is a measure of the ratio of the number of 
boxes with the highest probability to the number of boxes with the 
lowest probability (NPmax(δ)/NPmin(δ)=δ-Δf). In case of Δf>0 the 
fragments described by the high probability value predominate; 
whereas, in case of Δf<0 the fragments described by the low 
probability value predominate. Interpretation of the width of arm's 
spacing of the multifractal spectrum has been also provided in 
papers [41-44]: 
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Fig. 15. Example of the multifractal spectrum 
 

 

6. Conclusions 
 

The modified PCM method for determination of the surface 
fractal dimension was proposed in the presented work. 
Calculations performed proved that the new method makes it 
possible to determine this parameter more correctly. Differences 
are especially significant for rough surfaces, as was tested using 
series of data sets generated by algorithms for modelling surfaces 
with fractional fractal dimension. The proposed modified method 
for determination of the surface fractal dimension can be used for 
description of the geometrical features of coatings obtained in the 
PVD and CVD processes, which was implied by the author in his 
earlier works [25-33], where the described modification was not 
taken into consideration. 
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Results of the multifractal analysis of the surface topography 
obtained from the AFM microscope described in the literature [40] 
suggest that the spectrum breadth is connected with roughness of 
coatings. Parameters f(αmax) and f(αmin) reflect the numbers of boxes 
(NPmax(δ)=Nαmin~δ-f(αmin)) with the maximum and 
(NPmin(δ)=Nαmax~δ-f(αmax)) minimum probability values respectively. 
Value Δf=f(αmin)- f(αmax) is a measure of the ratio of the number of 
boxes with the highest probability to the number of boxes with the 
lowest probability (NPmax(δ)/NPmin(δ)=δ-Δf). In case of Δf>0 the 
fragments described by the high probability value predominate; 
whereas, in case of Δf<0 the fragments described by the low 
probability value predominate. Interpretation of the width of arm's 
spacing of the multifractal spectrum has been also provided in 
papers [41-44]: 
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Fig. 15. Example of the multifractal spectrum 
 

 

6. Conclusions 
 

The modified PCM method for determination of the surface 
fractal dimension was proposed in the presented work. 
Calculations performed proved that the new method makes it 
possible to determine this parameter more correctly. Differences 
are especially significant for rough surfaces, as was tested using 
series of data sets generated by algorithms for modelling surfaces 
with fractional fractal dimension. The proposed modified method 
for determination of the surface fractal dimension can be used for 
description of the geometrical features of coatings obtained in the 
PVD and CVD processes, which was implied by the author in his 
earlier works [25-33], where the described modification was not 
taken into consideration. 
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