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Analysis and modelling

Abstract
Purpose: The paper presents results of numerical analysis in metatarsal bone „I” - compression screws system. 
The aim of the work was determined stresses, strain and displacement in the inserted screws.
Design/methodology/approach: Metatarsal bone „I” was selected to researches. The analysis was carried out 
on the metatarsal bone „I” - compression screws system. The influence of the loads and displacements on the 
bone - screws system on the results of numerical analyses was analyzed. In order to carry out calculations, 2 
models of diverse mechanical properties of screw - Ti-6Al-4V alloy - model 1, stainless steel (Cr-Ni-Mo) - 
model 2 and two load steps were selected.
Findings: The analyses showed the difference in displacements, strains and stresses depending on the selected 
mechanical properties screws and the way of loads.
Research limitations/implications: The limitations were connected with simplification of numerical model 
of femur as well as with the selected boundary conditions. Two difference way of loads metatarsal bone „I”  - 
compression screws system: 1_force F = 500 N, 2_ displacement l = 1 mm were applied.
Practical implications: The obtained results can be useful in clinical practice. They can be applied in selection 
of stabilization methods or rehabilitation as well as in describing the biomechanical conditions connected with 
type of bone fracture obtained from medical imaging.
Originality/value: Stress-strain-displacement characteristics of metatarsal bone „I” - compression screws 
system, obtained from the numerical analysis were presented in the work.
Keywords: Numerical techniques; Biomechanical analysis; Biomaterials
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1. Introduction 

 
Nowadays the canullated compression screws are used for 

small bone treatment such as scaphoid fractures, intercarpal 
arthrodesis, finger joint arthrodesis and corrective osteotomy of 
hallux valgus. Application of this kind of surgery implants make 
fast healing of bone fractures possible [1-5]. 

Implantation technique consists: first drill and screw guide. 
The Kirschner wire is inserted using the drill and screw guide. 
Second, checking the position of the K-wire in 4 planes under 
image intensifier control. After that the surgeon determining 
screw length, drilling through drill and screw guide. Next the 
compression screws are inserted - Figs. 1 and 2. At the end of 
implantation procedure the position of screws are being checked 
in 4 planes under image intensifier control - Fig. 1 [1]. 
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From the biomechanical point of view, determination of hard 
tissues structure is crucial. Knowledge of the properties is 
essential, both in diagnosis of bone system illnesses as well as in 
selection of implants’ mechanical properties. Stiffness of a bone - 
implant system is particularly important [6-25]. 
 

 
 
Fig. 1. Checking the position of the screw in 4 planes: axial, 
Lateran, 45  pronation, 45  supination [1] 
 

 
 

Fig. 2. Insertion of the screw [1] 
 
 

2.Material and methods 
 

The bones of foot includes tarsal bones, metatarsals (bones) 
[I-V], phalanges, and sesamoid bones. Metatarsal bone "I" was 
applied in the analysis. This is the longest, the thickness and the 
most loaded bone of foot - Fig. 3. In order to carry out the 
numerical analysis the following material properities of bone were 
set: Young modulus E = 18600 MPa and Poisson's ratio  = 0.3. 
 

 
 

Fig. 3. Geometrical model of human foot and metatarsal bone "I" 
choose for numerical analysis 

Geometrical model of compression screws was carried out in 
ANSYS software on the basis of technical documentation - Fig. 4.  
The following material properties were set: 
 model 1: 
 titanium alloy -  Ti-Al-4V ELI [27]: 

o Young modulus E = 110000 MPa 
o Poisson’s ratio  = 0.33 

 model 2: 
 stainless steel Cr-Ni-Mo [26]: 

o Young modulus E = 200000 MPa 
o Poisson’s ratio  = 0.33 

 

 
 

Fig. 4. Geometrical model of compression screw 
 
 Geometrical model of metatarsal bone "I" - compression 
screws system take into considerations operation technique was 
presented in Figure 5. 
 

a)   

b)    
 
Fig. 5. Geometrical model of metatarsal bone "I" - compression 
screws system: a) general view of metatarsal bone "I" with 
fracture gap, b) compression screws 
 

On the basis of the geometrical models a finite element mesh 
was generated. The meshing was realized with the use of the 
SOLID95 element - Fig. 6. This type of element is used for the 
three-dimensional modeling of solid structures. The element is 

L 

L1 3,5 

D2 D1 

2,0 

2,9 1,5 

1,1

 

defined by 20 nodes having three degrees of freedom at each 
node: translations in the nodal x, y, and z directions - Fig. 7. 

 

 
 

Fig. 6. Discrete model of the metatarsal bone "I" - compression 
screw system 
 

 
 

Fig. 7. The SOLID 95 finite element 

 In the course of the work, displacements, strains and stresses, 
depending on the screws mechanical properties, were calculated. 

In order to carry out the calculations, appropriate initial and 
boundary conditions reflecting phenomena in real system were 
determined - Fig. 8. 

The following assumptions were set:  
 lower part of the metatarsal bone "I" was immobilized 

(all degrees of freedom of nodes on external surfaces of condyles 
were taken away), 

 bone was loaded according to the scheme presented in Fig. 4. 
There were perform two stages of solution: 1 – displacement 
1 mm was established at the basis of metatarsal bone "I", 2 - force 
F = 500 N was applied at the basis of metatarsal bone "I" 

The range of analysis consisted of determination of 
displacements, strains and stresses: 
 in elements of the metatarsal bone "I" - compression screws 

made of stainless steel,  
 in elements of the metatarsal bone "I" - compression screws 

made of Ti-6Al-4V alloy. 
 

 
 

Fig. 8. Loading scheme of model 
 

Table 1. 
Results of the FEM analysis of the metatarsal bone "I" - compression screws system 

Displacement, mm Strain , % Stress , 
MPa 

x y z    Load steps 

 

Metatarsal bone "I" - compression screws system  (Ti-6Al-4V alloy) 
System 0.32 0.05 0.17 1.02 0.32 4704 

1 Displacement 1 
mm Compression 

screws  870 

System 0.007 0.006 0.053 0.544 0.44 4525 
2 Force  

F = 500 N Compression 
screws  385 

  Metatarsal bone "I" - compression screws system  (Cr-Ni-Mo stainless steel) 
System 0.30 0.03 0.16 1.069 0.32 4762 

1 Displacement 1 
mm Compression 

screws  1389 

System 0.006 0.005 0.05 0.529 0.44 4525 
2 Force  

F = 500 N Compression 
screws  541 

2.	�Materials and methods
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3.Results 
 

The obtained maximal displacements, strains and stresses 
for the metatarsal bone "I" - compression screws system for both 
metallic biomaterials (Ti-6Al-4V alloy and Cr-Ni-Mo stainless 
steel) and two load steps are the reduced values according to the 
Huber-Mises-Henck hypothesis. The obtained results were 
presented in table as well as in the graphic form. 

The results for the given boundary conditions were 
presented in Table 1 and Figures 11 to 22. 

The obtained results allowed to draw graphs representing 
relation between the global and axial displacements and stresses 
depending on the applied boundary conditions - Fig. 9 and 10. On 
the basis of the analysis it was concluded that maximum 
equivalent stresses were localized the fixation site of the model 
and in the point of the applied loading. Lower values of both 
displacements and stresses were presented in the models loaded 
with the force of 500 N for the screws made of Ti-6Al-4V alloy. 

 

 
 
Fig. 9. Comparison of maximum displacement for all analyzed 
models 
 

 
 

Fig. 10. Comparison of stress value for all analyzed models 
 

Maximum stresses in the screws were localized in the 
transition zone between threads for the displacement equal to 1 
mm. For the Ti-alloy and stainless steel screws and for the applied 

boundary conditions, maximum stresses were equal to 870 MPa 
and 1389 MPa, respectively. However, the stresses on the whole 
surface, for both the applied force 500 N and the displacement 
equal to 1 mm, did not exceed 400 MPa for the Ti-alloy screws 
and 500 MPa for the steel screws. 
 
 
3.1.FEM analysis of the bone - compression 

screws system - compression screw made of 
Ti-6Al-4V alloy - load step 1 

 

 
a) 

 
b) 

 
c) 

 
d) 
 
Fig. 11. Displacement distribution in bone - compression screws 
system: a) axis OX, b) axis OY, c) axis OZ, d) displacement 
vector sum - Ti-6Al-4V alloy, load step 1 

 

 
 
Fig. 12. Strain distribution in bone - compression screws system 
x100% - Ti-6Al-4V alloy, load step 1 
 

a)  
 

 
b) 
 
Fig. 13. Stress distribution in bone : a) compression screws 
system, b) crews, MPa (screws - Ti-6Al-4V, load step 1) 
 
 
3.2. FEM analysis of the bone - compression 

screws system - compression screws made 
of Ti-6Al-4V alloy - load step 2  

 
 
 

 
 
Fig. 14. Strain distribution in bone - compression screw systems 
x100% - Ti-6Al-4V alloy, load step 2 

a)  

b)  

c)  

d)  
 
Fig. 15. Displacement distribution in bone - compression screws 
system: a) axis OX, b) axis OY, c) axis OZ, d) displacement 
vector sum - Ti-6Al-4V alloy, load step 2 
 

a)  

b)    
 
Fig. 16. Stress distribution in bone: a) compression screws 
system, b) crews, MPa (screws - Ti-6Al-4V, load step 2) 

3.	�Results

3.1.	�FEM analysis of the bone - 
compression screws system 
- compression screw made of 
Ti-6Al-4V alloy - load step 1

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


193

Analysis and modelling

FEM analysis of compression screws used for small bone treatment 

3.Results 
 

The obtained maximal displacements, strains and stresses 
for the metatarsal bone "I" - compression screws system for both 
metallic biomaterials (Ti-6Al-4V alloy and Cr-Ni-Mo stainless 
steel) and two load steps are the reduced values according to the 
Huber-Mises-Henck hypothesis. The obtained results were 
presented in table as well as in the graphic form. 

The results for the given boundary conditions were 
presented in Table 1 and Figures 11 to 22. 

The obtained results allowed to draw graphs representing 
relation between the global and axial displacements and stresses 
depending on the applied boundary conditions - Fig. 9 and 10. On 
the basis of the analysis it was concluded that maximum 
equivalent stresses were localized the fixation site of the model 
and in the point of the applied loading. Lower values of both 
displacements and stresses were presented in the models loaded 
with the force of 500 N for the screws made of Ti-6Al-4V alloy. 

 

 
 
Fig. 9. Comparison of maximum displacement for all analyzed 
models 
 

 
 

Fig. 10. Comparison of stress value for all analyzed models 
 

Maximum stresses in the screws were localized in the 
transition zone between threads for the displacement equal to 1 
mm. For the Ti-alloy and stainless steel screws and for the applied 

boundary conditions, maximum stresses were equal to 870 MPa 
and 1389 MPa, respectively. However, the stresses on the whole 
surface, for both the applied force 500 N and the displacement 
equal to 1 mm, did not exceed 400 MPa for the Ti-alloy screws 
and 500 MPa for the steel screws. 
 
 
3.1.FEM analysis of the bone - compression 

screws system - compression screw made of 
Ti-6Al-4V alloy - load step 1 

 

 
a) 

 
b) 

 
c) 

 
d) 
 
Fig. 11. Displacement distribution in bone - compression screws 
system: a) axis OX, b) axis OY, c) axis OZ, d) displacement 
vector sum - Ti-6Al-4V alloy, load step 1 

 

 
 
Fig. 12. Strain distribution in bone - compression screws system 
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a)  
 

 
b) 
 
Fig. 13. Stress distribution in bone : a) compression screws 
system, b) crews, MPa (screws - Ti-6Al-4V, load step 1) 
 
 
3.2. FEM analysis of the bone - compression 

screws system - compression screws made 
of Ti-6Al-4V alloy - load step 2  

 
 
 

 
 
Fig. 14. Strain distribution in bone - compression screw systems 
x100% - Ti-6Al-4V alloy, load step 2 

a)  

b)  

c)  

d)  
 
Fig. 15. Displacement distribution in bone - compression screws 
system: a) axis OX, b) axis OY, c) axis OZ, d) displacement 
vector sum - Ti-6Al-4V alloy, load step 2 
 

a)  

b)    
 
Fig. 16. Stress distribution in bone: a) compression screws 
system, b) crews, MPa (screws - Ti-6Al-4V, load step 2) 

3.2.	�FEM analysis of the bone - 
compression screws system - 
compression screws made  
of Ti-6Al-4V alloy - load step 2
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3.3. FEM analysis of the bone - compression 
screws system - compression screw made of 
Cr-Ni-Mo stainless steel - load step 1  

 
 

 
a) 

 
b) 

 
c) 

 
d) 
 
Fig. 17. Displacement distribution in bone - compression screws 
system: a) axis OX, b) axis OY, c) axis OZ, d) displacement 
vector sum - Cr-Ni-Mo stainless steel, load step 1 
 

 
 
Fig. 18. Strain distribution in bone - compression screws system 
x100% - Cr-Ni-Mo stainless steel, load step 1 

a)  

b)   
 
Fig. 19. Stress distribution in bone: a) compression screws system, b) 
crews, MPa (screws - Cr-Ni-Mo stainless steel, load step 1) 
 
3.4. FEM analysis of the bone - compression 

screws system - compression screw made of 
Cr-Ni-Mo stainless steel - load step 2 

 

a).  

b)  

c)  

d)  
 
Fig. 20. Displacement distribution in bone - compression screws 
system: a) axis OX, b) axis OY, c) axis OZ, d) displacement 
vector sum - Cr-Ni-Mo stainless steel, load step 1 

 

 
Fig. 21. Strain distribution in bone - compression screws system 
x100% - Cr-Ni-Mo stainless steel, load step 2 
 
 

 
a) 

 
b) 
 
Fig. 22. Stress distribution in bone: a) compression screws 
system, b) crews, MPa (screws - Cr-Ni-Mo stainless steel, load 
step 2) 
 
 
4. Conclusions 
 

The preliminary numerical analysis of the metatarsal bone 
“I” - compression screws system for the applied different metallic 
biomaterials allowed to indicate dangerous areas of the 
compressive screws and is starting point for the geometry 
optimization. The analysis of the obtained results showed that for 
the given way of loading, the damage of the screws is highly 
probable in the most vulnerable area ei. the transition zone 
between threads. The initial research carried out on the simplified 
model, taking into consideration only the metatarsal bone "I", will 
be continued with the use of the complete model presented in  
Fig. 1. Further research of compressive screws will be focused on 
experimental tests in order to verify the results of the numerical 
analysis. 
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3.3. FEM analysis of the bone - compression 
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