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Abstract
Purpose: The aim of the paper is to investigate the behaviour of the cooperating agents having to agree task 
execution.
Design/methodology/approach: A heuristic method is proposed for scheduling tasks that should be carried out 
by a group of agents. An important issue is that the agents have to complete their negotiations to commit to the 
task and carry out it in real time. This task was solved by splitting the problem solving into two layers which 
make it possible to obtain the rough solutions first and further improve them next as much as possible.
Findings: The first layer proposed refers to tasks assigned static priorities and its goal is to meet the real time 
requirements. Next, the agents can proceed to obtain the optimized solution, provided there is time to do it before 
the task execution has to begin.
Research limitations/implications: Analysis of the negotiations procedure was done and model examples were 
worked out to develop a planning system based on these design requirements.
Practical implications: Implementing the real time task execution planning in artificial agents brings them 
closer to the job shop floor real life requirements, making it possible to develop software entities mimicking 
reactions of humans and capable of joint task execution planned on the fly as needed.
Originality/value: Analysis of the real time task planning and execution of groups of agents.
Keywords: Artificial agents; Real time; Execution planning; Negotiations; Group of agents
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1. Introduction 

 
Running manufacturing processes calls for real-time 

information which can only be reliably and acquired from plant 
control systems collecting production flow data from all available 
monitoring devices. The issue is that real life production conditions 
are seldom crisp and certain with uncertainty in process 
identification being predominant. All this information is expected to 
be dealt with by the autonomous agents in contemporary factory 
automation. Their architecture is made of three components – 

sensors, collecting and transmitting data to the cognition element, 
analysing them, taking into account the current activity plans and 
deciding actions to take – individually or along with other agents, 
and finally communicating their decisions the action command to 
the effectors, which eventually may be other agents [1-3]. An agent 
features an entity that perceives its environment through sensors  
of any nature. The agent proceeds a problem-solving process based 
on its perception to obtain a single action or a set of actions. The 
agent then acts upon the environment using effectors (required to 
execute actions).  

1.	�Introduction

The issue is that it is difficult to reach optimum decisions in 
the uncertain conditions in general and to do it in real time, which 
make the problem even more complicated [4-6]. Therefore, the 
automated manufacturing process should incorporate various 
agents which are designed to solve specific problems, being 
grouped usually at several hierarchical layers [7]. In most cases 
linguistic variables and rules-of-thumb are used to form the fuzzy 
logic models, heuristics, based on the relevant domain experts’ 
experience in running production or maintenance processes [8-
10]. The proven method of solving this agent design problems is 
to use the historical data to train and optimise the fuzzy models 
reqired for the uncertain conditions. The resulting models are 
implemented into the event driven agents – best the internet-based 
ones. The quick response requirement, obvious in the real time 
systems may in many times require co-operation of many agents, 
based on the inference results of some other fuzzy agents [11-12]. 
Providing quick response and good quality, in terms of efficiency, 
agent work plans, which are continuously updated when any new 
events occur that may affect the plan carried out call for splitting 
the plan development into two levels: the first level assuring 
fulfilment of the strict temporal constraints, and the second one 
being dedicated to acquiring results of higher quality. The second 
level algorithms attempt to reuse results obtained previously, in 
similar cases, to make better use of the existing processor time, 
whenever feasible, however this is not critical for the system 
operation, as the scheduler operating at the first level has to take 
actions to meet the deadlines [13-16]. 

The fuzzy procedures can be invoked to generate decision-
making results in the execution stage, which would make up the 
following framework: 
 Executing agent: this component is a core component of the 

proposed model, whose task is to perform the inference 
processes, 

 Database: stores the production and system data (usually 
usinf the MySQL database system). The database is the 
repository of decision parameters to the executing agent. 

 Data updating agent: records the selected the currently 
updated data, while the sensors are gathering new data. 

 Data updating monitor: this element scans the database and 
advises the executing agent to start the specified action when 
the pre-defined conditions are matched. 

 Reporting agent: this agent displays or broadcasts the 
generated results. 

 
 

2. Multi-Agent Systems 
 

The notion of the multi-agent systems is connected with the 
behaviour within groups of agents with various features. One 
should also take into account that there may be agents which may 
consist of the so-called in-agents, which, makes their co-operation 
negotiations even more complex. The existence of an agent is not 
required in advance, before the problem solving context occurs, as 
the relevant agent or agents may be automatically generated and 
tuned to solve the specific task. What is important, however, is 
that the agents are the heterogeneous (in their class) and reusable 
entities.  This means that the agents should be designed for 
various contexts showing the autonomous and self-interested 

behaviour, albeit they will have to work for some “common” 
benefit [17].  

Therefore, any multi-agent system should be treated as one 
demonstrating the following stance: 
 non-benevolence, as agents should behave in a rational way, 

trying to maximise their goal function (utility) [5]. This 
approach makes them less vulnerable to “selfish” or even 
“malevolent” behaviour of their counterparts, moreover, this 
is also a way to make them less prone to suffer from 
“ignorant” (in certain conditions) or incompetent agents who 
may wish to use them to work with/for them to accomplish 
certain tasks. 

 autonomy, as agents prefer to pursuit their own goals, and 
negotiate with others to make their decision if it is purposeful 
for them to adopt goals of others, even in part. This is usually 
implemented in the agent utility functions as a strive to obtain 
a certain incentive in return for participation of tasks carried 
out for others.   

 readiness to act to reach multiple goals, which involves a 
possibility of situations when conflicting goals may occur. 
This is due to different local utility measures that the co-
operating agents may have. 

 heterogeneity, which is demonstrated by various utility 
functions of agents, their different architectures or knowledge 
representation, all that resulting in adoption of different goals 
finally. 
 Reaching any decision, calls for either reactive or 

deliberative architecture, while the real-time conditions call for 
using the reactive approach first, which will guarantee deciding 
the right action, while the deliberative one may be employed 
provided there is a time slot for it. The decision above may be a 
decision pertaining to an action to be taken by a group of agents. 

It is required that the agents that have to take decisions in 
real-time are implemented as applications on a real-time platform, 
best QNX [18], as the industry standard well field proven since 
years. QNX microkernel architecture provides the built-in 
distributed processing, which means that a control application – in 
this case agent on any node - can transparently access resources 
(including other agents) - disks, ports, protocol stacks, etc. - 
residing on any other node in the network. Therefore, a network 
of individual machines becomes, provides a seamless, distributed 
control over hundreds of thousands of I/O points - sensors.  

From a temporal point of view, a critical agent’s task is 
characterized by a period and a deadline. In this way, the 
available time for the agent to obtain a valid response is strictly 
bounded and between the time it is (periodically) released and its 
deadline. In this interval, the agent has to provide a good-enough 
response to its subproblem, given the current situation of the 
environment. It also has a priority, and a worst-case execution 
time for its reactive component. 

The supervisory agent can define a deadline and a period 
associated to each agent of the subordinate level [3]. Reducing the 
problem complexity of the agent’s task may require dividing it 
into subtasks [3, 4, 11]. When the strictly time dependant part of a 
task has been completed, the first-level scheduler passes the 
control to next, second-level scheduler, which in turn can execute 
the optional component of this task. In every case when the first-
level scheduler passes the time dependant goal, having 
accomplished it, it should communicate to the second-level 
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scheduler the existing available time. This is the time left for the 
second-level scheduler to perform its planning and to execute the 
optional plan components.  

A number of heuristics are usually used as those that are used 
for the first-level, that has to provide results in real-time [7, 15, 
19].  
 Deadline Monotonic (DM): This policy prevails in case of 

very restrictive deadlines, simply ordering the tasks in 
accordance with their maximum execution deadline. This 
approach makes execution possible of the largest possible 
number of tasks, yet it does not let obtain the high-quality 
results. 

 Best Importance First (BIF): This approach orders the tasks 
according to the importance the tasks have for the agent. This 
policy makes the resulting agent plan quality better, being 
quite simple to implement. 

 Earliest Deadline First (EDF): This policy takes the task 
deadline into account; however, in another way than in case of 
the DM policy. In this case the task execution deadline is 
taken into account keeping in mind when the agent was 
activated, which means it analyses the agent’s condition more 
closely, using the remaining time until the task’s deadline, not 
its absolute deadline. The results obtained are better than 
obtained for DM policy, as the tasks that do not expire soon 
may be postponed.  

 High Quality First (HQF): This approach focuses on task 
quality rather than its urgency or deadline. Since it does not 
refer to the deadline, it may not execute tasks which would 
otherwise be executed using a different ordering method . 

 High Slope First (HSF): This approach sorts the tasks 
according to their quality as a function of their execution time. 
It attempts to merge two previous arguments (quality and 
deadlines). The results are improved compared to the previous 
heuristics, as both approaches are merged. 

 
 
 

3. Task planning for cooperating agents 
 
 
 
3.1. Resolving of conflicts 
 

The agents may co-ordinate their strategies to reach a certain 
goal and agree on some multi-plan [5, 13]. This process consists 
in calculating the vectors of utilities for all agents involved in 
negotiations. The negotiations include bargaining, to let the agents 
obtain some incentive for spending some of their resources 
(energy, time, etc.) for a goal, which was not delegated to them 
initially. However, as the agents are autonomous, they cannot be 
forced to co-operate, so it may happen that thay can decide to 
proceed alone without entering into any agreements which might 
affect adversely their freedom. There is a way to overcome this 
limitation – the agents may gamble on the group multi-plan, 
trying to optimise it, instead of randomising their individual plans 
in a “selfish” way, which eventually might let them enter into co-
operation. This approach calls for existence of layered agent 
architecture [2, 7, 13]. 

3.2. Scheduling 
 

The real-time scheduling can be efficiently carried out using 
the anytime algorithm [21, 21] which is an iterative refinement 
algorithm that can be interrupted and asked to provide an answer 
at any time. An important feature of such algorithm is that the 
quality if its results improve to a certain level with the growing 
amount of its run time. Anytime algorithms are characteristic of 
their performance profile, being a function that links the run time 
allowed to an anytime algorithm with the quality of the results 
produced by the algorithm [22]. The main approach is based on 
modelling the behaviour of an intelligent agent (a set of anytime 
algorithms) by providing explicit allocation of resources to each 
anytime algorithm. The reason to allocate the resources is 
maximizing the total quality of the computation of the anytime 
algorithm set – agent actions. 

The anytime algorithms have the advantage of being able to 
provide some solution at any moment, therefore they can respond 
immediately to changing environmental situations. An important 
feature is that the quality of the answers they provide may have 
the controlled quality, by assigning them some extra amount of 
run time should the environmental conditions allow. This is why 
the anytime algorithms are very useful in realtime applications. 
One can apply separate anytime algorithms to each type of 
activity the agent has to carry out (inclusive the comples agents 
composed of the in-agents). The main task in all cases is finding 
algorithms whose expected solution quality (i.e., agent plans) 
improves in some anticipated monotonic way. The anytime 
algorithms exist for some classes of problem domains, like 
scheduling problems, typical for agent behviour modelling – 
Fig.1.  

 
 

Fig. 1. Example of the agent plan before refinement 
 
 
The unrefined agent plans, like those shown in Fig.1 are 

included in the test parameters of the agent bahaviour simulator 
system (Fig.2). The test data generator provides the agent 
beavious simultor with the test data sets, with the varying values 
of the parameters describing its environmental conditions. 

Behaviours represent the alternative ways of reacting the 
environmental conditions charactersitic of the agent (starting 
activity, halting it, re-planning, assuming goals in co-operation 
with other agents, etc.). At run time, the agent is always in one 
behaviour called the current active behaviour. The agent may 
switch to another behaviour should he detect a certain condition in 

3.	�Task planning for 
cooperating agents

3.1.	�Resolving of conflicts

3.2.	�Scheduling the environment. An effective approach in deciding how to 
change the agent behavious is splitting this task into smaller 
problem-solving entities. This approach makes it possible to 
specify the problem-solving knowledge in a well structured 
modular way [13, 16, 17]. By negotiation, all concerned agents 
(this approach includes also the in-agents mentioned above) can 
cooperate to solve the entire problem by generating a multi-plan.  
 

 
Fig. 2. Agent behaviour simulator 

 
Such cooperation is achieved by sharing of the results 

obtained by different agents, in a global system memory common 
to a group of cooperating agents, which may be formed through 
broadcasting the call for co-operation [13]. Each agent has a 
reflex layer that assures a minimal quality real-time response (i.e., 
with the guaranteed execution time, specific for the particular 
task). Its second, real-time deliberative layer, is used to improve 
the initial response, time allowing. 

All this negotiation and generation of multi-plans, composed 
of activities of the individual agents are carried out in a modelled 
world - set of beliefs, being supplemented with all the requred 
domain knowledge relevant to the agent’s tasks (most often in a 
form of the If-Then rules). 

The initial, raw work plans for the agents, their internal 
mental states and their sets of beliefs are stored in a blackboard 
which can be accessed by all co-operating agents [23]. This 
architecture makes it possible to modify the agents’ beliefs should 
it be required to carry out their tasks, or to adapt them to their new 
applications. This can be also done at run time.  
 
 

4. Conclusions 
The following conclusions can be reached from the results 

that have been obtained from literature review and own work: 
 Effective task planning calls for splitting the process into two 

stages – the real time stage, calling for the reactive agent 
architecture, and the slack time optimisation, with the use of 
the deliberative agent architecture. 

 Agents can co-operate assuming, if needed, each other’s 
goals, however in a non-benevolent way, which guarantees 
obtaining some incentives by them.  

 Operation of agents may take place in the uncertain 
conditions, and the tasks (goals) may be accomplished even 
by the heterogeneous agent groups, some of which may be 
generated on the fly. 

Elements of the agent environment were modelled using EXSYS 
Professional and real time models were developed in QNX OS. 
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composed of the in-agents). The main task in all cases is finding 
algorithms whose expected solution quality (i.e., agent plans) 
improves in some anticipated monotonic way. The anytime 
algorithms exist for some classes of problem domains, like 
scheduling problems, typical for agent behviour modelling – 
Fig.1.  

 
 

Fig. 1. Example of the agent plan before refinement 
 
 
The unrefined agent plans, like those shown in Fig.1 are 

included in the test parameters of the agent bahaviour simulator 
system (Fig.2). The test data generator provides the agent 
beavious simultor with the test data sets, with the varying values 
of the parameters describing its environmental conditions. 

Behaviours represent the alternative ways of reacting the 
environmental conditions charactersitic of the agent (starting 
activity, halting it, re-planning, assuming goals in co-operation 
with other agents, etc.). At run time, the agent is always in one 
behaviour called the current active behaviour. The agent may 
switch to another behaviour should he detect a certain condition in 

the environment. An effective approach in deciding how to 
change the agent behavious is splitting this task into smaller 
problem-solving entities. This approach makes it possible to 
specify the problem-solving knowledge in a well structured 
modular way [13, 16, 17]. By negotiation, all concerned agents 
(this approach includes also the in-agents mentioned above) can 
cooperate to solve the entire problem by generating a multi-plan.  
 

 
Fig. 2. Agent behaviour simulator 

 
Such cooperation is achieved by sharing of the results 

obtained by different agents, in a global system memory common 
to a group of cooperating agents, which may be formed through 
broadcasting the call for co-operation [13]. Each agent has a 
reflex layer that assures a minimal quality real-time response (i.e., 
with the guaranteed execution time, specific for the particular 
task). Its second, real-time deliberative layer, is used to improve 
the initial response, time allowing. 

All this negotiation and generation of multi-plans, composed 
of activities of the individual agents are carried out in a modelled 
world - set of beliefs, being supplemented with all the requred 
domain knowledge relevant to the agent’s tasks (most often in a 
form of the If-Then rules). 

The initial, raw work plans for the agents, their internal 
mental states and their sets of beliefs are stored in a blackboard 
which can be accessed by all co-operating agents [23]. This 
architecture makes it possible to modify the agents’ beliefs should 
it be required to carry out their tasks, or to adapt them to their new 
applications. This can be also done at run time.  
 
 

4. Conclusions 
The following conclusions can be reached from the results 

that have been obtained from literature review and own work: 
 Effective task planning calls for splitting the process into two 

stages – the real time stage, calling for the reactive agent 
architecture, and the slack time optimisation, with the use of 
the deliberative agent architecture. 

 Agents can co-operate assuming, if needed, each other’s 
goals, however in a non-benevolent way, which guarantees 
obtaining some incentives by them.  

 Operation of agents may take place in the uncertain 
conditions, and the tasks (goals) may be accomplished even 
by the heterogeneous agent groups, some of which may be 
generated on the fly. 

Elements of the agent environment were modelled using EXSYS 
Professional and real time models were developed in QNX OS. 
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