
Short paper 52 © Copyright by International OCSCO World Press. All rights reserved. 2009

VOLUME 37

ISSUE 1

November

2009
of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

Cooperating agents approach to task
execution planning

J. Madejski*
Division of Materials Processing Technology, Management and Computer Techniques
in Materials Science, Institute of Engineering Materials and Biomaterials,
Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
* �Corresponding author: E-mail address: janusz.madejski@polsl.pl

Received 13.08.2009; published in revised form 01.11.2009

Analysis and modelling

Abstract
Purpose: The aim of the paper is to investigate the behaviour of the cooperating agents having to agree task
execution.
Design/methodology/approach: A heuristic method is proposed for scheduling tasks that should be carried out
by a group of agents. An important issue is that the agents have to complete their negotiations to commit to the
task and carry out it in real time. This task was solved by splitting the problem solving into two layers which
make it possible to obtain the rough solutions first and further improve them next as much as possible.
Findings: The first layer proposed refers to tasks assigned static priorities and its goal is to meet the real time
requirements. Next, the agents can proceed to obtain the optimized solution, provided there is time to do it before
the task execution has to begin.
Research limitations/implications: Analysis of the negotiations procedure was done and model examples were
worked out to develop a planning system based on these design requirements.
Practical implications: Implementing the real time task execution planning in artificial agents brings them
closer to the job shop floor real life requirements, making it possible to develop software entities mimicking
reactions of humans and capable of joint task execution planned on the fly as needed.
Originality/value: Analysis of the real time task planning and execution of groups of agents.
Keywords: Artificial agents; Real time; Execution planning; Negotiations; Group of agents

Reference to this paper should be given in the following way:
J. Madejski, Cooperating agents approach to task execution planning, Journal of Achievements in Materials and
Manufacturing Engineering 37/1 (2009) 52-56.

1. Introduction

Running manufacturing processes calls for real-time

information which can only be reliably and acquired from plant
control systems collecting production flow data from all available
monitoring devices. The issue is that real life production conditions
are seldom crisp and certain with uncertainty in process
identification being predominant. All this information is expected to
be dealt with by the autonomous agents in contemporary factory
automation. Their architecture is made of three components –

sensors, collecting and transmitting data to the cognition element,
analysing them, taking into account the current activity plans and
deciding actions to take – individually or along with other agents,
and finally communicating their decisions the action command to
the effectors, which eventually may be other agents [1-3]. An agent
features an entity that perceives its environment through sensors
of any nature. The agent proceeds a problem-solving process based
on its perception to obtain a single action or a set of actions. The
agent then acts upon the environment using effectors (required to
execute actions).

1.	�Introduction

The issue is that it is difficult to reach optimum decisions in
the uncertain conditions in general and to do it in real time, which
make the problem even more complicated [4-6]. Therefore, the
automated manufacturing process should incorporate various
agents which are designed to solve specific problems, being
grouped usually at several hierarchical layers [7]. In most cases
linguistic variables and rules-of-thumb are used to form the fuzzy
logic models, heuristics, based on the relevant domain experts’
experience in running production or maintenance processes [8-
10]. The proven method of solving this agent design problems is
to use the historical data to train and optimise the fuzzy models
reqired for the uncertain conditions. The resulting models are
implemented into the event driven agents – best the internet-based
ones. The quick response requirement, obvious in the real time
systems may in many times require co-operation of many agents,
based on the inference results of some other fuzzy agents [11-12].
Providing quick response and good quality, in terms of efficiency,
agent work plans, which are continuously updated when any new
events occur that may affect the plan carried out call for splitting
the plan development into two levels: the first level assuring
fulfilment of the strict temporal constraints, and the second one
being dedicated to acquiring results of higher quality. The second
level algorithms attempt to reuse results obtained previously, in
similar cases, to make better use of the existing processor time,
whenever feasible, however this is not critical for the system
operation, as the scheduler operating at the first level has to take
actions to meet the deadlines [13-16].

The fuzzy procedures can be invoked to generate decision-
making results in the execution stage, which would make up the
following framework:
 Executing agent: this component is a core component of the

proposed model, whose task is to perform the inference
processes,

 Database: stores the production and system data (usually
usinf the MySQL database system). The database is the
repository of decision parameters to the executing agent.

 Data updating agent: records the selected the currently
updated data, while the sensors are gathering new data.

 Data updating monitor: this element scans the database and
advises the executing agent to start the specified action when
the pre-defined conditions are matched.

 Reporting agent: this agent displays or broadcasts the
generated results.

2. Multi-Agent Systems

The notion of the multi-agent systems is connected with the
behaviour within groups of agents with various features. One
should also take into account that there may be agents which may
consist of the so-called in-agents, which, makes their co-operation
negotiations even more complex. The existence of an agent is not
required in advance, before the problem solving context occurs, as
the relevant agent or agents may be automatically generated and
tuned to solve the specific task. What is important, however, is
that the agents are the heterogeneous (in their class) and reusable
entities. This means that the agents should be designed for
various contexts showing the autonomous and self-interested

behaviour, albeit they will have to work for some “common”
benefit [17].

Therefore, any multi-agent system should be treated as one
demonstrating the following stance:
 non-benevolence, as agents should behave in a rational way,

trying to maximise their goal function (utility) [5]. This
approach makes them less vulnerable to “selfish” or even
“malevolent” behaviour of their counterparts, moreover, this
is also a way to make them less prone to suffer from
“ignorant” (in certain conditions) or incompetent agents who
may wish to use them to work with/for them to accomplish
certain tasks.

 autonomy, as agents prefer to pursuit their own goals, and
negotiate with others to make their decision if it is purposeful
for them to adopt goals of others, even in part. This is usually
implemented in the agent utility functions as a strive to obtain
a certain incentive in return for participation of tasks carried
out for others.

 readiness to act to reach multiple goals, which involves a
possibility of situations when conflicting goals may occur.
This is due to different local utility measures that the co-
operating agents may have.

 heterogeneity, which is demonstrated by various utility
functions of agents, their different architectures or knowledge
representation, all that resulting in adoption of different goals
finally.
 Reaching any decision, calls for either reactive or

deliberative architecture, while the real-time conditions call for
using the reactive approach first, which will guarantee deciding
the right action, while the deliberative one may be employed
provided there is a time slot for it. The decision above may be a
decision pertaining to an action to be taken by a group of agents.

It is required that the agents that have to take decisions in
real-time are implemented as applications on a real-time platform,
best QNX [18], as the industry standard well field proven since
years. QNX microkernel architecture provides the built-in
distributed processing, which means that a control application – in
this case agent on any node - can transparently access resources
(including other agents) - disks, ports, protocol stacks, etc. -
residing on any other node in the network. Therefore, a network
of individual machines becomes, provides a seamless, distributed
control over hundreds of thousands of I/O points - sensors.

From a temporal point of view, a critical agent’s task is
characterized by a period and a deadline. In this way, the
available time for the agent to obtain a valid response is strictly
bounded and between the time it is (periodically) released and its
deadline. In this interval, the agent has to provide a good-enough
response to its subproblem, given the current situation of the
environment. It also has a priority, and a worst-case execution
time for its reactive component.

The supervisory agent can define a deadline and a period
associated to each agent of the subordinate level [3]. Reducing the
problem complexity of the agent’s task may require dividing it
into subtasks [3, 4, 11]. When the strictly time dependant part of a
task has been completed, the first-level scheduler passes the
control to next, second-level scheduler, which in turn can execute
the optional component of this task. In every case when the first-
level scheduler passes the time dependant goal, having
accomplished it, it should communicate to the second-level

http://www.journalamme.org
http://www.journalamme.org
http://www.readingdirect.org
http://www.readingdirect.org

53READING DIRECT: www.journalamme.org

Analysis and modelling

1. Introduction

Running manufacturing processes calls for real-time

information which can only be reliably and acquired from plant
control systems collecting production flow data from all available
monitoring devices. The issue is that real life production conditions
are seldom crisp and certain with uncertainty in process
identification being predominant. All this information is expected to
be dealt with by the autonomous agents in contemporary factory
automation. Their architecture is made of three components –

sensors, collecting and transmitting data to the cognition element,
analysing them, taking into account the current activity plans and
deciding actions to take – individually or along with other agents,
and finally communicating their decisions the action command to
the effectors, which eventually may be other agents [1-3]. An agent
features an entity that perceives its environment through sensors
of any nature. The agent proceeds a problem-solving process based
on its perception to obtain a single action or a set of actions. The
agent then acts upon the environment using effectors (required to
execute actions).

The issue is that it is difficult to reach optimum decisions in
the uncertain conditions in general and to do it in real time, which
make the problem even more complicated [4-6]. Therefore, the
automated manufacturing process should incorporate various
agents which are designed to solve specific problems, being
grouped usually at several hierarchical layers [7]. In most cases
linguistic variables and rules-of-thumb are used to form the fuzzy
logic models, heuristics, based on the relevant domain experts’
experience in running production or maintenance processes [8-
10]. The proven method of solving this agent design problems is
to use the historical data to train and optimise the fuzzy models
reqired for the uncertain conditions. The resulting models are
implemented into the event driven agents – best the internet-based
ones. The quick response requirement, obvious in the real time
systems may in many times require co-operation of many agents,
based on the inference results of some other fuzzy agents [11-12].
Providing quick response and good quality, in terms of efficiency,
agent work plans, which are continuously updated when any new
events occur that may affect the plan carried out call for splitting
the plan development into two levels: the first level assuring
fulfilment of the strict temporal constraints, and the second one
being dedicated to acquiring results of higher quality. The second
level algorithms attempt to reuse results obtained previously, in
similar cases, to make better use of the existing processor time,
whenever feasible, however this is not critical for the system
operation, as the scheduler operating at the first level has to take
actions to meet the deadlines [13-16].

The fuzzy procedures can be invoked to generate decision-
making results in the execution stage, which would make up the
following framework:
 Executing agent: this component is a core component of the

proposed model, whose task is to perform the inference
processes,

 Database: stores the production and system data (usually
usinf the MySQL database system). The database is the
repository of decision parameters to the executing agent.

 Data updating agent: records the selected the currently
updated data, while the sensors are gathering new data.

 Data updating monitor: this element scans the database and
advises the executing agent to start the specified action when
the pre-defined conditions are matched.

 Reporting agent: this agent displays or broadcasts the
generated results.

2. Multi-Agent Systems

The notion of the multi-agent systems is connected with the
behaviour within groups of agents with various features. One
should also take into account that there may be agents which may
consist of the so-called in-agents, which, makes their co-operation
negotiations even more complex. The existence of an agent is not
required in advance, before the problem solving context occurs, as
the relevant agent or agents may be automatically generated and
tuned to solve the specific task. What is important, however, is
that the agents are the heterogeneous (in their class) and reusable
entities. This means that the agents should be designed for
various contexts showing the autonomous and self-interested

behaviour, albeit they will have to work for some “common”
benefit [17].

Therefore, any multi-agent system should be treated as one
demonstrating the following stance:
 non-benevolence, as agents should behave in a rational way,

trying to maximise their goal function (utility) [5]. This
approach makes them less vulnerable to “selfish” or even
“malevolent” behaviour of their counterparts, moreover, this
is also a way to make them less prone to suffer from
“ignorant” (in certain conditions) or incompetent agents who
may wish to use them to work with/for them to accomplish
certain tasks.

 autonomy, as agents prefer to pursuit their own goals, and
negotiate with others to make their decision if it is purposeful
for them to adopt goals of others, even in part. This is usually
implemented in the agent utility functions as a strive to obtain
a certain incentive in return for participation of tasks carried
out for others.

 readiness to act to reach multiple goals, which involves a
possibility of situations when conflicting goals may occur.
This is due to different local utility measures that the co-
operating agents may have.

 heterogeneity, which is demonstrated by various utility
functions of agents, their different architectures or knowledge
representation, all that resulting in adoption of different goals
finally.
 Reaching any decision, calls for either reactive or

deliberative architecture, while the real-time conditions call for
using the reactive approach first, which will guarantee deciding
the right action, while the deliberative one may be employed
provided there is a time slot for it. The decision above may be a
decision pertaining to an action to be taken by a group of agents.

It is required that the agents that have to take decisions in
real-time are implemented as applications on a real-time platform,
best QNX [18], as the industry standard well field proven since
years. QNX microkernel architecture provides the built-in
distributed processing, which means that a control application – in
this case agent on any node - can transparently access resources
(including other agents) - disks, ports, protocol stacks, etc. -
residing on any other node in the network. Therefore, a network
of individual machines becomes, provides a seamless, distributed
control over hundreds of thousands of I/O points - sensors.

From a temporal point of view, a critical agent’s task is
characterized by a period and a deadline. In this way, the
available time for the agent to obtain a valid response is strictly
bounded and between the time it is (periodically) released and its
deadline. In this interval, the agent has to provide a good-enough
response to its subproblem, given the current situation of the
environment. It also has a priority, and a worst-case execution
time for its reactive component.

The supervisory agent can define a deadline and a period
associated to each agent of the subordinate level [3]. Reducing the
problem complexity of the agent’s task may require dividing it
into subtasks [3, 4, 11]. When the strictly time dependant part of a
task has been completed, the first-level scheduler passes the
control to next, second-level scheduler, which in turn can execute
the optional component of this task. In every case when the first-
level scheduler passes the time dependant goal, having
accomplished it, it should communicate to the second-level

2.	�Multi-agent systems

http://www.journalamme.org
http://www.journalamme.org
http://www.readingdirect.org
http://www.readingdirect.org

Short paper 54

Journal of Achievements in Materials and Manufacturing Engineering

J. Madejski

Volume 37 Issue 1 November 2009

scheduler the existing available time. This is the time left for the
second-level scheduler to perform its planning and to execute the
optional plan components.

A number of heuristics are usually used as those that are used
for the first-level, that has to provide results in real-time [7, 15,
19].
 Deadline Monotonic (DM): This policy prevails in case of

very restrictive deadlines, simply ordering the tasks in
accordance with their maximum execution deadline. This
approach makes execution possible of the largest possible
number of tasks, yet it does not let obtain the high-quality
results.

 Best Importance First (BIF): This approach orders the tasks
according to the importance the tasks have for the agent. This
policy makes the resulting agent plan quality better, being
quite simple to implement.

 Earliest Deadline First (EDF): This policy takes the task
deadline into account; however, in another way than in case of
the DM policy. In this case the task execution deadline is
taken into account keeping in mind when the agent was
activated, which means it analyses the agent’s condition more
closely, using the remaining time until the task’s deadline, not
its absolute deadline. The results obtained are better than
obtained for DM policy, as the tasks that do not expire soon
may be postponed.

 High Quality First (HQF): This approach focuses on task
quality rather than its urgency or deadline. Since it does not
refer to the deadline, it may not execute tasks which would
otherwise be executed using a different ordering method .

 High Slope First (HSF): This approach sorts the tasks
according to their quality as a function of their execution time.
It attempts to merge two previous arguments (quality and
deadlines). The results are improved compared to the previous
heuristics, as both approaches are merged.

3. Task planning for cooperating agents

3.1. Resolving of conflicts

The agents may co-ordinate their strategies to reach a certain
goal and agree on some multi-plan [5, 13]. This process consists
in calculating the vectors of utilities for all agents involved in
negotiations. The negotiations include bargaining, to let the agents
obtain some incentive for spending some of their resources
(energy, time, etc.) for a goal, which was not delegated to them
initially. However, as the agents are autonomous, they cannot be
forced to co-operate, so it may happen that thay can decide to
proceed alone without entering into any agreements which might
affect adversely their freedom. There is a way to overcome this
limitation – the agents may gamble on the group multi-plan,
trying to optimise it, instead of randomising their individual plans
in a “selfish” way, which eventually might let them enter into co-
operation. This approach calls for existence of layered agent
architecture [2, 7, 13].

3.2. Scheduling

The real-time scheduling can be efficiently carried out using
the anytime algorithm [21, 21] which is an iterative refinement
algorithm that can be interrupted and asked to provide an answer
at any time. An important feature of such algorithm is that the
quality if its results improve to a certain level with the growing
amount of its run time. Anytime algorithms are characteristic of
their performance profile, being a function that links the run time
allowed to an anytime algorithm with the quality of the results
produced by the algorithm [22]. The main approach is based on
modelling the behaviour of an intelligent agent (a set of anytime
algorithms) by providing explicit allocation of resources to each
anytime algorithm. The reason to allocate the resources is
maximizing the total quality of the computation of the anytime
algorithm set – agent actions.

The anytime algorithms have the advantage of being able to
provide some solution at any moment, therefore they can respond
immediately to changing environmental situations. An important
feature is that the quality of the answers they provide may have
the controlled quality, by assigning them some extra amount of
run time should the environmental conditions allow. This is why
the anytime algorithms are very useful in realtime applications.
One can apply separate anytime algorithms to each type of
activity the agent has to carry out (inclusive the comples agents
composed of the in-agents). The main task in all cases is finding
algorithms whose expected solution quality (i.e., agent plans)
improves in some anticipated monotonic way. The anytime
algorithms exist for some classes of problem domains, like
scheduling problems, typical for agent behviour modelling –
Fig.1.

Fig. 1. Example of the agent plan before refinement

The unrefined agent plans, like those shown in Fig.1 are

included in the test parameters of the agent bahaviour simulator
system (Fig.2). The test data generator provides the agent
beavious simultor with the test data sets, with the varying values
of the parameters describing its environmental conditions.

Behaviours represent the alternative ways of reacting the
environmental conditions charactersitic of the agent (starting
activity, halting it, re-planning, assuming goals in co-operation
with other agents, etc.). At run time, the agent is always in one
behaviour called the current active behaviour. The agent may
switch to another behaviour should he detect a certain condition in

3.	�Task planning for
cooperating agents

3.1.	�Resolving of conflicts

3.2.	�Scheduling the environment. An effective approach in deciding how to
change the agent behavious is splitting this task into smaller
problem-solving entities. This approach makes it possible to
specify the problem-solving knowledge in a well structured
modular way [13, 16, 17]. By negotiation, all concerned agents
(this approach includes also the in-agents mentioned above) can
cooperate to solve the entire problem by generating a multi-plan.

Fig. 2. Agent behaviour simulator

Such cooperation is achieved by sharing of the results

obtained by different agents, in a global system memory common
to a group of cooperating agents, which may be formed through
broadcasting the call for co-operation [13]. Each agent has a
reflex layer that assures a minimal quality real-time response (i.e.,
with the guaranteed execution time, specific for the particular
task). Its second, real-time deliberative layer, is used to improve
the initial response, time allowing.

All this negotiation and generation of multi-plans, composed
of activities of the individual agents are carried out in a modelled
world - set of beliefs, being supplemented with all the requred
domain knowledge relevant to the agent’s tasks (most often in a
form of the If-Then rules).

The initial, raw work plans for the agents, their internal
mental states and their sets of beliefs are stored in a blackboard
which can be accessed by all co-operating agents [23]. This
architecture makes it possible to modify the agents’ beliefs should
it be required to carry out their tasks, or to adapt them to their new
applications. This can be also done at run time.

4. Conclusions
The following conclusions can be reached from the results

that have been obtained from literature review and own work:
 Effective task planning calls for splitting the process into two

stages – the real time stage, calling for the reactive agent
architecture, and the slack time optimisation, with the use of
the deliberative agent architecture.

 Agents can co-operate assuming, if needed, each other’s
goals, however in a non-benevolent way, which guarantees
obtaining some incentives by them.

 Operation of agents may take place in the uncertain
conditions, and the tasks (goals) may be accomplished even
by the heterogeneous agent groups, some of which may be
generated on the fly.

Elements of the agent environment were modelled using EXSYS
Professional and real time models were developed in QNX OS.

References

[1] M. Wooldridge, N.R. Jennings, (Eds.), Agent theories,

architectures, and languages: a survey. In: Intelligent
Agents, ECAI’94 Workshop on Theories, Architectures, and
Languages. Springer, Berlin,1995.

[2] J. Madejski, State-of-the art of Distributed Artificial
Intelligence in Manufacturing Systems, Proceedings of the
5th International Conference Achievements in Mechanical
and Materials Engineering AMME'96, Wis a, 1996 121-124.

[3] J. Madejski, Agents as the Building Blocks of the
Responsibility-Based Manufacturing Systems, Proceedings of
the International Scientific Conference - Challenges to Civil
and Mechanical Engineering, Wroc aw, 1997, 213-220.

[4] W.C., Benton, H. Shin, Manufacturing planning and control:
The evolution of MRP and JIT integration. European
Journal of Operational Research 110 (1998) 411-440.

[5] J. Madejski, Fuzzy logic approach to the autonomous agent
task utility function evaluation, Proceedings of the 8th
International Conference "Achievements in Mechanical and
Materials Engineering" AMME'99, Gliwice-Rydzyna-
Paw owice-Rokosowo, 1999, 241-244.

[6] A. Beskese, C. Kahraman, Z. Irani, Quantification of
flexibility in advanced manufacturing systems using fuzzy
concept. International Journal of Production Economics 89
(2004) 45-56.

[7] J. Madejski, Agent architecture for intelligent manufacturing
systems, Journal of Achievements in Materials and
Manufacturing Engineering 29/2 (2008) 167-170.

[8] M. Shimbo, T. Ishida, Controlling the learning process of
real-time heuristic search. Artificial Intelligence 146/1
(2003) 1-41.

[9] F. Barber, V. Botti, A. Crespo, D. Gallardo, E. Onaindi, A
temporal blackboard for real-time process control. Journal of
Engineering Applications of Artificial Intelligence 7/3
(1994) 225-266.

[10] F. Baykoc, S. Erol, Simulation modelling and analysis of a
JIT production system, International Journal of Production
Economics 55 (1998) 203-212.

[11] P. Stoop, V. Wiers, The complexity of scheduling in
practice, International Journal of Operational and Production
Management 16/10 (1996) 37-53.

[12] R.E. White, J.N. Pearson, J.R. Wilson, JIT manufacturing: A
survey of implementations in small and large US
manufacturers, Management Science 45/1 (1999) 1-15.

[13] J. Madejski, Agents as building blocks of responsibility-
based manufacturing systems, Journal of Materials
Processing Technology 106 (2000) 219-222.

[14] C. Carrascosa, M. Rebollo, J. Julian, V. Botti, Deliberative
server for real-time agents, Lecture Notes in Artificial
Intelligence 2691 (2003) 485-496.

[15] C. Carrascosa, J. Bajo, V. Julian, J.M. Corchado, V. Botti,
Hybrid multi-agent architecture as a real-time problem-solving
model, Expert Systems with Applications 34 (2006) 2-17.

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org

55

Analysis and modelling

Cooperating agents approach to task execution planning

scheduler the existing available time. This is the time left for the
second-level scheduler to perform its planning and to execute the
optional plan components.

A number of heuristics are usually used as those that are used
for the first-level, that has to provide results in real-time [7, 15,
19].
 Deadline Monotonic (DM): This policy prevails in case of

very restrictive deadlines, simply ordering the tasks in
accordance with their maximum execution deadline. This
approach makes execution possible of the largest possible
number of tasks, yet it does not let obtain the high-quality
results.

 Best Importance First (BIF): This approach orders the tasks
according to the importance the tasks have for the agent. This
policy makes the resulting agent plan quality better, being
quite simple to implement.

 Earliest Deadline First (EDF): This policy takes the task
deadline into account; however, in another way than in case of
the DM policy. In this case the task execution deadline is
taken into account keeping in mind when the agent was
activated, which means it analyses the agent’s condition more
closely, using the remaining time until the task’s deadline, not
its absolute deadline. The results obtained are better than
obtained for DM policy, as the tasks that do not expire soon
may be postponed.

 High Quality First (HQF): This approach focuses on task
quality rather than its urgency or deadline. Since it does not
refer to the deadline, it may not execute tasks which would
otherwise be executed using a different ordering method .

 High Slope First (HSF): This approach sorts the tasks
according to their quality as a function of their execution time.
It attempts to merge two previous arguments (quality and
deadlines). The results are improved compared to the previous
heuristics, as both approaches are merged.

3. Task planning for cooperating agents

3.1. Resolving of conflicts

The agents may co-ordinate their strategies to reach a certain
goal and agree on some multi-plan [5, 13]. This process consists
in calculating the vectors of utilities for all agents involved in
negotiations. The negotiations include bargaining, to let the agents
obtain some incentive for spending some of their resources
(energy, time, etc.) for a goal, which was not delegated to them
initially. However, as the agents are autonomous, they cannot be
forced to co-operate, so it may happen that thay can decide to
proceed alone without entering into any agreements which might
affect adversely their freedom. There is a way to overcome this
limitation – the agents may gamble on the group multi-plan,
trying to optimise it, instead of randomising their individual plans
in a “selfish” way, which eventually might let them enter into co-
operation. This approach calls for existence of layered agent
architecture [2, 7, 13].

3.2. Scheduling

The real-time scheduling can be efficiently carried out using
the anytime algorithm [21, 21] which is an iterative refinement
algorithm that can be interrupted and asked to provide an answer
at any time. An important feature of such algorithm is that the
quality if its results improve to a certain level with the growing
amount of its run time. Anytime algorithms are characteristic of
their performance profile, being a function that links the run time
allowed to an anytime algorithm with the quality of the results
produced by the algorithm [22]. The main approach is based on
modelling the behaviour of an intelligent agent (a set of anytime
algorithms) by providing explicit allocation of resources to each
anytime algorithm. The reason to allocate the resources is
maximizing the total quality of the computation of the anytime
algorithm set – agent actions.

The anytime algorithms have the advantage of being able to
provide some solution at any moment, therefore they can respond
immediately to changing environmental situations. An important
feature is that the quality of the answers they provide may have
the controlled quality, by assigning them some extra amount of
run time should the environmental conditions allow. This is why
the anytime algorithms are very useful in realtime applications.
One can apply separate anytime algorithms to each type of
activity the agent has to carry out (inclusive the comples agents
composed of the in-agents). The main task in all cases is finding
algorithms whose expected solution quality (i.e., agent plans)
improves in some anticipated monotonic way. The anytime
algorithms exist for some classes of problem domains, like
scheduling problems, typical for agent behviour modelling –
Fig.1.

Fig. 1. Example of the agent plan before refinement

The unrefined agent plans, like those shown in Fig.1 are

included in the test parameters of the agent bahaviour simulator
system (Fig.2). The test data generator provides the agent
beavious simultor with the test data sets, with the varying values
of the parameters describing its environmental conditions.

Behaviours represent the alternative ways of reacting the
environmental conditions charactersitic of the agent (starting
activity, halting it, re-planning, assuming goals in co-operation
with other agents, etc.). At run time, the agent is always in one
behaviour called the current active behaviour. The agent may
switch to another behaviour should he detect a certain condition in

the environment. An effective approach in deciding how to
change the agent behavious is splitting this task into smaller
problem-solving entities. This approach makes it possible to
specify the problem-solving knowledge in a well structured
modular way [13, 16, 17]. By negotiation, all concerned agents
(this approach includes also the in-agents mentioned above) can
cooperate to solve the entire problem by generating a multi-plan.

Fig. 2. Agent behaviour simulator

Such cooperation is achieved by sharing of the results

obtained by different agents, in a global system memory common
to a group of cooperating agents, which may be formed through
broadcasting the call for co-operation [13]. Each agent has a
reflex layer that assures a minimal quality real-time response (i.e.,
with the guaranteed execution time, specific for the particular
task). Its second, real-time deliberative layer, is used to improve
the initial response, time allowing.

All this negotiation and generation of multi-plans, composed
of activities of the individual agents are carried out in a modelled
world - set of beliefs, being supplemented with all the requred
domain knowledge relevant to the agent’s tasks (most often in a
form of the If-Then rules).

The initial, raw work plans for the agents, their internal
mental states and their sets of beliefs are stored in a blackboard
which can be accessed by all co-operating agents [23]. This
architecture makes it possible to modify the agents’ beliefs should
it be required to carry out their tasks, or to adapt them to their new
applications. This can be also done at run time.

4. Conclusions
The following conclusions can be reached from the results

that have been obtained from literature review and own work:
 Effective task planning calls for splitting the process into two

stages – the real time stage, calling for the reactive agent
architecture, and the slack time optimisation, with the use of
the deliberative agent architecture.

 Agents can co-operate assuming, if needed, each other’s
goals, however in a non-benevolent way, which guarantees
obtaining some incentives by them.

 Operation of agents may take place in the uncertain
conditions, and the tasks (goals) may be accomplished even
by the heterogeneous agent groups, some of which may be
generated on the fly.

Elements of the agent environment were modelled using EXSYS
Professional and real time models were developed in QNX OS.

References

[1] M. Wooldridge, N.R. Jennings, (Eds.), Agent theories,

architectures, and languages: a survey. In: Intelligent
Agents, ECAI’94 Workshop on Theories, Architectures, and
Languages. Springer, Berlin,1995.

[2] J. Madejski, State-of-the art of Distributed Artificial
Intelligence in Manufacturing Systems, Proceedings of the
5th International Conference Achievements in Mechanical
and Materials Engineering AMME'96, Wis a, 1996 121-124.

[3] J. Madejski, Agents as the Building Blocks of the
Responsibility-Based Manufacturing Systems, Proceedings of
the International Scientific Conference - Challenges to Civil
and Mechanical Engineering, Wroc aw, 1997, 213-220.

[4] W.C., Benton, H. Shin, Manufacturing planning and control:
The evolution of MRP and JIT integration. European
Journal of Operational Research 110 (1998) 411-440.

[5] J. Madejski, Fuzzy logic approach to the autonomous agent
task utility function evaluation, Proceedings of the 8th
International Conference "Achievements in Mechanical and
Materials Engineering" AMME'99, Gliwice-Rydzyna-
Paw owice-Rokosowo, 1999, 241-244.

[6] A. Beskese, C. Kahraman, Z. Irani, Quantification of
flexibility in advanced manufacturing systems using fuzzy
concept. International Journal of Production Economics 89
(2004) 45-56.

[7] J. Madejski, Agent architecture for intelligent manufacturing
systems, Journal of Achievements in Materials and
Manufacturing Engineering 29/2 (2008) 167-170.

[8] M. Shimbo, T. Ishida, Controlling the learning process of
real-time heuristic search. Artificial Intelligence 146/1
(2003) 1-41.

[9] F. Barber, V. Botti, A. Crespo, D. Gallardo, E. Onaindi, A
temporal blackboard for real-time process control. Journal of
Engineering Applications of Artificial Intelligence 7/3
(1994) 225-266.

[10] F. Baykoc, S. Erol, Simulation modelling and analysis of a
JIT production system, International Journal of Production
Economics 55 (1998) 203-212.

[11] P. Stoop, V. Wiers, The complexity of scheduling in
practice, International Journal of Operational and Production
Management 16/10 (1996) 37-53.

[12] R.E. White, J.N. Pearson, J.R. Wilson, JIT manufacturing: A
survey of implementations in small and large US
manufacturers, Management Science 45/1 (1999) 1-15.

[13] J. Madejski, Agents as building blocks of responsibility-
based manufacturing systems, Journal of Materials
Processing Technology 106 (2000) 219-222.

[14] C. Carrascosa, M. Rebollo, J. Julian, V. Botti, Deliberative
server for real-time agents, Lecture Notes in Artificial
Intelligence 2691 (2003) 485-496.

[15] C. Carrascosa, J. Bajo, V. Julian, J.M. Corchado, V. Botti,
Hybrid multi-agent architecture as a real-time problem-solving
model, Expert Systems with Applications 34 (2006) 2-17.

4.	�Conclusions

References

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org

Short paper 56

Journal of Achievements in Materials and Manufacturing Engineering

J. Madejski

Volume 37 Issue 1 November 2009

[16] Y. Qian, M. Zheng, X. Li, L. Lin, Implementation of
knowledge maintenance modules in an expert system for
fault diagnosis of chemical process operation. Expert
Systems with Applications 28 (2005) 249-257.

[17] S. Ossowski, Co-ordination in Artificial Agent Societies,
Springer-Verlag, Berlin, Heidelber, New York, 1998.

[18] http://www.qnx.com/
[19] V. Botti, C. Carrascosa, V. Julian, J. Soler, Modelling agents

in hard real-time environments. Lectures Notes in Artificial
Intelligence 1647 (1999) 63-76.

[20] A. Garvey, V. Lesser, Design-to-time real-time scheduling.
IEEE Transactions on Systems, Man and Cybernetics 23/6
(1993) 1491-1503.

[21] A. Garvey, V. Lesser, A Survey of research in deliberative
real-time artificial intelligence, Journal of Real-Time
Systems 6/2 (1994) 317-347.

[22] S. Zilberstein, Operational rationality through compilation
of anytime algorithms. AI Magazine 16/2 (1995) 79-80.

[23] F. Barber, V. Botti, A. Crespo, D. Gallardo, E. Onaindi, A
temporal blackboard for real-time process control. Journal of
Engineering Applications of Artificial Intelligence 7/3
(1994) 225-266.

http://www.journalamme.org
http://www.journalamme.org

